首页 > 图书详情

弗雷格逻辑主义研究 哲学类;专著 VIP

售价:¥60.52 ¥89
0人在读 |
0 评分
丛书名:
刘靖贤   社会科学文献出版社  2020-03 出版
ISBN:978-7-5201-5973-9

*温馨提示:此类商品为数字类产品,不支持退换货,不支持下载打印

图书简介 目录 参考文献 音频 视频
弗雷格是数理逻辑的创始人和分析哲学的奠基人,他的大部分工作都致力于一种被称为逻辑主义的数学哲学,即把算术还原为逻辑。为了执行逻辑主义方案,弗雷格设计了一种新的逻辑系统,它在实质上是由二阶逻辑与第五公理构成的二阶理论。然而,罗素在弗雷格的逻辑系统中发现了悖论。长久以来,人们一直认为罗素发现的这个悖论彻底瓦解了弗雷格的逻辑主义。但是,20世纪80年代,人们重新发现了休谟原则,由此引发了新弗雷格主义的兴起。本书的目的是对弗雷格的逻辑主义进行系统性研究,以当代新弗雷格主义及相关争论为出发点,返璞归真,还原弗雷格本人的逻辑主义思想的面貌。
[展开]
  • 弗雷格著作缩写
  • 导言
  • 第一章 从逻辑到算术
    1. 第一节 逻辑
    2. 第二节 算术
  • 第二章 《概念文字》中的形式证明
    1. 第一节 定理98(§§23-28)
    2. 第二节 定理133(§§29-31)
  • 第三章 《算术基础》中的形式证明
    1. 第一节 等数关系(§§70-73)
    2. 第二节 零、后继关系和祖先关系(§§74-81)
    3. 第三节 在自然数序列中不存在最大数(§§82-83)
  • 第四章 《算术基本规律》中的形式证明
    1. 第一节 符号(第一卷§§1-25)
    2. 第二节 公理和规则(第一卷§§47-48)
    3. 第三节 主要定义(第一卷§§34-46)
    4. 第四节 主要定理(第一卷§§54-179和第二卷§§1-54)
    5. 第五节 罗素悖论(第二卷后记)
  • 第五章 改变抽象原则
    1. 第一节 修正的第五公理
    2. 第二节 休谟原则
    3. 第三节 新公理
  • 第六章 区分抽象原则
    1. 第一节 保守性
    2. 第二节 稳定性
    3. 第三节 强保守性
    4. 第四节 良莠不齐问题的哲学意义
  • 第七章 限制经典逻辑
    1. 第一节 二阶直谓逻辑
    2. 第二节 二阶正逻辑
    3. 第三节 二阶分层概括
  • 第八章 修正经典逻辑
    1. 第一节 二阶多值逻辑
    2. 第二节 二阶模态逻辑
  • 第九章 凯撒与数
    1. 第一节 数的定义
    2. 第二节 莱特和赫克的解决方案
    3. 第三节 新的解决方案
    4. 第四节 凯撒问题的扩展
  • 第十章 凯撒与外延
    1. 第一节 公理和定义
    2. 第二节 从公理和定义的角度看凯撒问题
    3. 第三节 概念的来源与同一
    4. 第四节 自然语言的误导
  • 第十一章 真值问题
    1. 第一节 弗雷格的概念文字有没有语义学
    2. 第二节 塔斯基的真定义是不是语义学
    3. 第三节 对当代多元真理论的批判
    4. 第四节 分层真理论
  • 第十二章 涵义问题
    1. 第一节 克里普克之前的争论
    2. 第二节 克里普克的解决方案
    3. 第三节 语法涵义、认知涵义和逻辑涵义
    4. 第四节 不存在涵义无穷分层问题
  • 致谢
[1]陈波:《逻辑哲学》,北京大学出版社,2005。 [2]〔德〕弗雷格:《弗雷格哲学论著选辑》,王路译,王炳文校,商务印书馆,1994。 [3]〔德〕弗雷格:《算术基础》,王路译,商务印书馆,1998。 [4]王路:《弗雷格思想研究》,商务印书馆,2008。 [5]叶峰:《二十世纪数学哲学》,北京大学出版社,2010。 [6]Pierre America and Jan Rutten,“Solving Reflexive Domain Equation in a Category of Complete Metric Spaces,” Journal of Computer and System Science 3(1989):343-375. [7]Maria Aloni,“Individual Concepts in Modal Predicate Logic,” Journal of Philosophical Logic 34(2005):1-64. [8]Aldo Antonelli,“Numerical Abstraction via the Frege Quantifier,” Notre Dame Journal of Formal Logic 51(2010):161-179. [9]Aldo Antonelli and Robert May,“Frege’s New Science,” Notre Dame Journal of Formal Logic 41(2000):242-270. [10]Arnon Avron,“Natural 3-Valued Logics:Characterization and Proof Theory,” Journal of Symbolic Logic 56(1991):276-294. [11]Michael Beaney and Erich Reck,eds.,Gottlob Frege:Critical Assessment of Leading Philosophers,4 Volumes(London and New York:Routledge,2005). [12]John Bell,“Frege’s Theorem in a Constructive Setting,” Journal of Symbolic Logic 64(1999):486-488. [13]Patricia Blanchette,“Frege’s Reduction,” History and Philosophy of Logic 15(1994):85-103. [14]Francesca Boccuni,“Plural Grundgesetze,” Studia Logica 96(2010):315-330. [15]Francesca Boccuni,“On the Consistency of a Plural Theory of Frege’s Grundgesetze,” Studia Logica 97(2011):329-345. [16]George Boolos,Logic,Logic,and Logic,Richard Jeffrey,eds.(Cambridge:Harvard University Press,1998). [17]Tyler Burge,Truth,Thought,Reason:Essays on Frege(Oxford:Oxford University Press,2005). [18]John Burgess,“On a Consistency Subsystem of Frege’s Grundgesetze,” Notre Dame Journal of Formal Logic 39(1998):274-278. [19]John Burgess,Fixing Frege(Princeton:Princeton University Press,2005). [20]Rudolf Carnap,Meaning and Necessity,A Study in Semantics and Modal Logic(Chicago:University of Chicago Press,1947). [21]Alan Church,“A Formulation of the Logic of Sense and Denotation,” in P.Henle,H.M.Kallen and S.K.Langer,eds.,Structure,Method,and Meaning:Essays in Honor of H.M.Scheffer(New York:The Liberal Arts Press,1951),pp.3-24. [22]Alan Church,“Outline of a Revised Formulation of the Logic of Sense and Denotation,” Nous 7(1973):24-33. [23]Roy Cook,“Conservativeness,Stability,and Abstraction,” British Journal for the Philosophy of Science 63(2012):673-696. [24]Roy Cook,“Hume’s Big Brother:Counting Conepts and the Bad Company Objection,” Synthese 170(2009):349-369. [25]Roy Cook and Philip Ebert,“Abstraction and Identity,” Dialectica 59(2005):121-139. [26]Donald Davidson,Inquiry into Truth and Interpretation(New York:Oxford University Press,1984). [27]William Demopoulos,ed.,Frege’s Philosophy of Mathematics(Cambridge:Harvard University Press,1995). [28]Michael Dummett,Frege:Philosophy of Language(London:Duchworth,1973). [29]Michael Dummett,Frege:Philosophy of Mathematics(Cambridge:Harvard University Press,1991). [30]Michael Dunn,“The Impossibility of Certain Higher-Order Non-Classical Logics with Extensionality,” in D.Austin,ed.,Philosophical Analysis(Dordrecht:Kluwer,1988),pp.261-280. [31]Ryszard Engelking,General Topology(Warsaw:Polish Scientific,1977). [32]John Etchemendy,“Tarski on Truth and Logical Consequence,” Journal of Symbolic Logic 53(1988):51-79. [33]Solomon Feferman,“Toward Useful Type-Free Theories,” Journal of Symbolic Logic 49(1984):75-111. [34]Fernando Ferreira,“Amending Frege’s Grundgesetze der Arithmetik,” Synthese 147(2005):3-19. [35]Fernando Ferreira and Kai Wehmeier,“On the Consistency of the Fragment of Frege’s Grundgesetze,” Journal of Philosophical Logic 31(2002):301-311. [36]Hartry Field,“Tarski’s Theory of Truth,” Journal of Philosophy 69(1972):347-375. [37]Hartry Field,Realism,Mathematics and Modality(New York:Basil Blackwell,1989). [38]Hartry Field,“The Conceptual Contingency of Mathematical Objects,” Mind 102(1993):285-299. [39]Kit Fine,The Limits of Abstraction(New York:Oxford University Press,2002). [40]Gottlob Frege,Begriffsschrift:eine der arithmetischen nachgebildete Formelsprache des reinen Denkens(Halle:L.Nebert,1879). [41]Gottlob Frege,Die Grundlagen der Arithmetik(Breslau:W.Koebner,1884). [42]Gottlob Frege,Grundgesetze der Arithmetik:begriffsschriftlich abgeleitet,Vol.Ⅰ(Jena:H.Pohle,1893). [43]Gottlob Frege,Grundgesetze der Arithmetik:begriffsschriftlich abgeleitet,Vol.Ⅱ(Jena:H.Pohle,1903). [44]Gottlob Frege,The Foundations of Arithmetic,J.L.Austin,trans.(Oxford:Blackwell,1950). [45]Gottlob Frege,Translations from the Philosophical Writings of Gottlob Frege,Peter Geach and Max Black,eds.(Oxford:Blackwell,1952). [46]Gottlob Frege,The Basic Laws of Arithmetic:Exposition of the System,Montgomery Furth,ed.(Los Angeles:University of California Press,1964). [47]Gottlob Frege,Conceptual Notation and Related Articles,T.W.Bynum,ed.(New York:Oxford University Press,1972). [48]Gottlob Frege,Posthumous Writings,P.Long and R.White,trans.(Oxford:Blackwell,1979). [49]Gottlob Frege,Philosophical and Mathematical Correspondence,B.McGuinness,ed.(Oxford:Blackwell,1980). [50]Gottlob Frege,Collected Papers on Mathematics,Logic,and Philosophy,B.McGuinness,ed.(Oxford:Blackwell,1984). [51]Gottlob Frege,Frege’s Lectures on Logic:Carnap’s Student Notes,1910-1914,E.H.Reck and S.Awodey,trans. and eds.(Chicago:Open Court,2004). [52]Mihai Ganea,“Burgess’ PV Is Robinson’s Q,” Journal of Symbolic Logic 72(2007):619-624. [53]Peter Geach,“Class and Concept,” Philosophical Review 64(1955):561-570. [54]Warren Goldfarb,“Frege’s Conception of Logic,” in Juliet Floyd and Sanford Shieh,eds.,Future Past:The Analytic Tradition in Twentieth-Century Philosophy(New York:Oxford University Press,2001),pp.25-41. [55]Bob Hale,“Real by Abstraction,” Philosophia Mathematica 8(2000):100-123. [56]Bob Hale,“Abstraction and Set Theory,” Notre Dame Journal of Formal Logic 41(2000):379-398. [57]Bob Hale and Crispin Wright,The Reason’s Proper Study(New York:Oxford University Press,2001). [58]Alan Hazen,“Logical Objects and the Paradox of Burali-Forti,” Erkenntnis 24(1986):283-291. [59]Richard Heck,“The Consistency of Predictive Fragments of Frege’s Grundgesetze der Arithmetik,” History and Philosophy of Logic 17(1996):209-220. [60]Richard Heck,“Tarski,Truth,and Semantics,” The Philosophical Review 106(1997):533-554. [61]Richard Heck,“Frege and Semantics,” Grazer Philosophische Studien 75(2007):27-63. [62]Richard Heck,Frege’s Theorem(New York:Oxford University Press,2011). [63]Richard Heck,“Ramified Frege Arithmetic,” Journal of Philosophical Logic 40(2011):715-735. [64]Richard Heck,Reading Frege’s Grundgesetze(New York:Oxford University Press,2012). [65]Harold Hodes,“Logicism and the Ontological Commitments of Arithmetic,” Journal of Philosophy 81(1984):123-149. [66]Paul Horwich,Truth(Oxford:Blackwell,1998). [67]Roland Hinnion and Thierry Libert,“Topological Models for Extensional Partial Set Theory,” Notre Dame Journal of Formal Logic 49(2008):39-53. [68]Theo Janssen,“Frege,Contextuality and Compositionality,” Journal of Logic,Language,and Information 10(2001):115-136. [69]Robin Jeshion,“Frege’s Notion of Self-Evidence,” Mind 110(2001):937-976. [70]Gary Kemp,“Caesar from Frege’s Perspective,” Dialectica 59(2005):179-199. [71]Kevin Klement,Frege and the Logic of Sense and Reference(London and New York:Routledge,2002). [72]D.Kaplan,“Quantifying in,” Synthese 19(1968):178-214. [73]Saul Kripke,Naming and Necessity(Cambridge:Harvard University Press,1980). [74]Saul Kripke,Philosophical Troubles,Collected Papers,vol.1(New York:Oxford University Press,2011). [75]Thierry Libert,“Models for a Paraconsistent Set Theory,” Journal of Applied Logic 3(2005):15-41. [76]Thierry Libert,“Semantics for Naive Set Theory in Many-Valued Logics:Techniques and Historical Account,” in J.van Benthem,G.Heinzmann,M.Rebuschi and H.Visser,eds.,The Age of Alternative Logics(Dordrecht:Springer,2006),pp.121-136. [77]Øystein Linnebo,“Predicative Fragments of Frege Arithmetic,” Bulletin of Symbolic Logic 10(2004):153-174. [78]Øystein Linnebo,“Frege’s Proof of Referentiality,” Notre Dame Journal of Formal Logic 45(2004):73-98. [79]Øystein Linnebo,“To Be Is to Be an F,” Dialectica 59(2005):201-222. [80]Øystein Linnebo,“Bad Company Tamed,” Synthese 170(2009):371-391. [81]Øystein Linnebo and Gabriel Uzquiano,“Which Abstraction Principles Are Acceptable?Some Limitative Results,” British Journal for the Philosophy of Science 60(2009):239-252. [82]Liu Jingxian,“Second-Order Positive Comprehension and Frege’s Basic Law V,” Frontier of Philosophy in China 7(2012):367-377. [83]Michael Lynch,“A functionalist Theory of Truth,” in Michael Lynch,ed.,The Nature of Truth:Classic and Contemporary Perspective(Cambridge:MIT Press,2001),pp.723-750. [84]Michael Lynch,“Truth and Multiple Realizability,” Australasian Journal of Philosophy 82(2004):384-408. [85]Fraser MacBride,“Speaking with Shadows:A Study of Neo-Logicism,” British Journal of the Philosophy of Science 54(2003):103-163. [86]Gregory Moore,“The Roots of Russell’s Paradox,” Russell:The Journal of Bertrand Russell Studies 8(1988):46-56. [87]Willard Quine,“On Frege’s Way Out,” Mind 64(1955):145-159. [88]Charles Parsons,“Frege’s Theory of Numbers,” in Max Black,ed.,Philosophy in America(Ithaca:Cornell University Press,1965),pp.180-203. [89]Terence Parsons,“On the Consistency of First-Order Portion of Frege’s Logical System,” Notre Dame Journal of Formal Logic 28(1987):161-168. [90]Terence Parsons,“Frege’s Hierarchies of Indirect Sense and the Paradox of Analysis,” Midwest Studies in Philosophy 6(1981):37-57. [91]Michael Potter and Tom Ricketts,eds.,The Cambridge Companion to Frege(Cambridge:Cambridge University Press,2010). [92]Graham Priest,“The Logic of Paradox,” Journal of Philosophical Logic 8(1979):219-241. [93]Michael Resnik,Frege and the Philosophy of Mathematics(Ithaca and London:Cornell University Press,1980). [94]Thomas Ricketts,“Generality,Meaning,and Sense in Frege,” Pacific Philosophical Quarterly 67(1986):172-195. [95]Marco Roffino,“Extensions as Representative Objects in Frege’s Logic,” Erkenntnis 52(2000):239-252. [96]Marco Roffino,“Why Frege Would Not Be a Neo-Fregean,” Mind 112(2003):51-78. [97]Matthias Schirn,“Fregean Abstraction,Referential Indeterminacy and the Logical Foundations of Arithmetic,” Erkenntnis 59(2003):203-232. [98]Matthias Schirn,“Hume’s Principle and Axiom V Reconsidered:Critical Reflections on Frege and His Interpreters,” Synthese 148(2006):171-227. [99]Matthias Schirn,“Concepts,Extensions,and Frege’s Logicist Project”,Mind 115(2006):983-1005. [100]Stewart Shapiro,Foundation without Foundationalism:A Case for Second-order Logic(New York:Oxford University Press,1991). [101]Stewart Shapiro,“Prolegomenon to Any Future Neo-Logicist Set Theory:Abstraction and Indefinite Extensibility,” British Journal for the Philosophy of Science 54(2003):59-91. [102]Stewart Shapiro and Alan Weir,“New V,ZF and Abstraction,” Philosophia Mathematica 7(1999):293-321. [103]Stewart Shapiro and Alan Weir,“Neo-Logicist Logic Is Not Epistemologically Innocent,” Philosophia Mathematica 8(2000):160-189. [104]Gila Sher,“In Search of a Substantive Theory of Truth,” Journal of Philosophy 101(1998):5-36. [105]Gila Sher,“On the Possibility of a Substantive Theory of Truth,” Synthese 117(1998):133-172. [106]Gila Sher,“Functional Pluralism,” Philosophical Books 46(2005):311-330. [107]Peter Simons,“Why Is There So Little Sense in Grundgesetze?” Mind 101(1992):753-766. [108]Scott Soams,“What Is a Theory of Truth,” Journal of Philosophy 81(1984):411-429. [109]Jason Stanley,“Truth and Metatheory in Frege,” Pacific Philosophical Quaterly 17(1996):45-70. [110]Peter Sullivan and Michael Potter,“Hale on Caesar,” Philosophia Mathematica 5(1997):135-152. [111]Alfred Tarski,Logic,Semantics,Metamathematics(Indianapolis:Hackett Publishing,1983). [112]Neil Tennant,“A General Theory of Abstraction Operators,” The Philosophical Quarterly 54(2004):105-133. [113]Neil Tennant,“On the Necessary Existence of Numbers,” Nous 31(1997):307-336. [114]Gabriel Uzquiano,“Semantic Nominalism,” Dialectica 59(2005):265-282. [115]Gabriel Uzquiano,“Bad Company Generalized,” Synthese 170(2009):331-347. [116]Albert Visser,“The Predicative Frege Hierarchy,” Annals of Pure and Applied Logic 160(2009):129-153. [117]Jean Van Heijenoort,“Logic as Calculus and Logic as Language,” Synthese 17(1967):324-330. [118]Sean Walsh,“Comparing Peano Arithmetic,Basic Law V,and Hume’s Principle,” Annals of Pure and Applied Logic 163(2012):1679-1709. [119]Zach Weber,“Transfinite Numbers in Paraconsistent Set Theory,” Review of Symbolic Logic 3(2010):71-92. [120]Kai Wehmeier,“Consistent Fragments of Grundgesetze and the Existence of Non-Logical Objects,” Synthese 121(1999):309-328. [121]Alan Weir,“Neo-Fregeanism:An Embarrassment of Riches,” Notre Dame Journal of Formal Logic 44(2003):13-48. [122]Crispin Wright,Frege’s Conception of Numbers as Objects(Aberdeen:Aberdeen University Press,1983).
[展开]

相关推荐

发表评论

同步转发到先晓茶馆

发表评论

手机可扫码阅读