首页 > 图书详情

数量经济研究 2020年第11卷第2期 经济管理类;集刊 VIP

售价:¥39.44 ¥58
0人在读 |
0 评分
丛书名:
张屹山   社会科学文献出版社  2020-04 出版
ISBN:978-7-5201-6450-4

*温馨提示:此类商品为数字类产品,不支持退换货,不支持下载打印

图书简介 目录 参考文献 音频 视频
《数量经济研究》由吉林大学数量经济研究中心主办,主要发表国内外学者在数量经济理论与应用、经济形势分析与预测、经济政策评价与建议、金融市场与金融风险管理、微观经济计量与经济模拟、博弈论与制度经济学等领域的研究成果。集刊遵循百花齐放、百家争鸣的方针,坚持理论研究与实证研究相结合、定量分析与定性分析相结合,关注世界经济领域的重大学科前沿问题,并结合中国的实际进行深入的分析和阐释。
[展开]
  • 编委会
  • 主编寄语
  • 美联储退出量化宽松政策的溢出效应研究
    1. 引言
    2. 1 美联储推出及退出量化宽松政策溢出效应的研究进展
    3. 2 美联储退出量化宽松政策冲击传导渠道的理论模型
    4. 3 美联储退出量化宽松政策对新兴、发达经济体影响的实证检验
    5. 4 美联储退出量化宽松政策溢出效应的脉冲响应分析
    6. 5 主要结论与政策建议
  • 财政支出规模对经济增长的非线性效应
    1. 1 问题的提出
    2. 2 模型设定与估计方法
    3. 3 实证分析
    4. 4 结论及政策建议
  • 中国房价存在涟漪效应吗?
    1. 引言
    2. 1 文献综述
    3. 2 数据来源与周期判定
    4. 3 模型的构建
    5. 4 实证分析
    6. 结论
  • 环境补贴经济效应的门限特征分析
    1. 引言
    2. 1 理论模型
    3. 2 计量模型设定
    4. 3 实证结果分析
    5. 4 结论与建议
  • 中国对外直接投资减少了母国碳排放吗?
    1. 引言
    2. 1 理论基础分析
    3. 2 对外直接投资与母国碳排放的空间溢出效应检验
    4. 3 对外直接投资影响母国碳排放的空间计量检验
    5. 4 研究结论与政策启示
  • Fama非理性泡沫在中国股票市场的检验及预测
    1. 引言
    2. 1 价格上涨后的平均收益率
    3. 2 价格上涨后崩盘与繁荣的概率
    4. 3 行业特征与崩盘的可能性
    5. 4 预测收益率
    6. 5 结论
  • 上海服务业先行指数构建、预测与区制状态研究
    1. 引言
    2. 1 文献综述
    3. 2 上海服务业先行指数指标选取及合成
    4. 3 服务业GDP增长率预测
    5. 4 周期波动特征与区制状态分析
    6. 结论
  • 中国工业绿色水资源效率的区域差异与收敛性研究
    1. 引言
    2. 1 方法、变量与数据
    3. 2 典型事实
    4. 3 中国工业绿色水资源效率区域差异及其来源
    5. 4 中国工业绿色水资源效率的空间收敛性分析
    6. 5 稳健性检验
    7. 6 主要结论与启示
  • 全球价值链视角下中日服务业出口贸易结构比较研究
    1. 引言
    2. 1 文献综述
    3. 2 研究方法与数据
    4. 3 实证结果分析
    5. 结论
  • 教育部人文社会科学重点研究基地吉林大学数量经济研究中心简介
  • 撰稿者须知
[1]李天国.2014.美国退出量化宽松对新兴经济体的传导机制研究——基于PVAR模型的实证分析[J].国际经济合作,(10):86-91. [2]李自磊,张云.2014.美国量化宽松政策对金砖四国溢出效应的比较研究——基于SVAR模型的跨国分析[J].财经科学,(4):22-31. [3]马理,余慧娟.2015.美国量化宽松货币政策对金砖国家的溢出效应研究[J].国际金融研究,(3):13-22. [4]聂菁,金洪飞.2015.美国量化宽松货币政策对中国行业出口的溢出效应研究[J].国际金融研究,(3):3-12. [5]唐旭茂.2015.美联储量化宽松政策对中国资本市场的冲击效应研究[J].世界经济研究,(6):12-23. [6]肖娱.2011.美国货币政策冲击的国际传导研究——针对亚洲经济体的实证分析[J].国际金融研究,(9):18-29. [7]张靖佳,孙浦阳,刘澜飚.2015.量化宽松政策、财富效应与企业出口[J].经济研究,(12):158-172. [8]张小宇,于依洋.2017.美国量化宽松与常规货币政策对中国实体经济溢出效应的实证检验[J].经济与管理研究,(1):25-36. [9]Arellano,M.,O.Bover. 1995. Another Look at the Instrumental Variable Estimation of Error-components Models[J]. Journal of Econometrics,68 (1):29-51. [10]Bernanke,B.S.,I.Mihov. 1998. Measuring Monetary Policy[J]. The Quarterly Journal of Economics,113 (3):869-902. [11]Bouraoui,T. 2015. The Effect of Reducing Quantitative Easing on Emerging Markets[J]. Applied Economics,47 (15):1562-1573. [12]Cho,D.,C.Rhee. 2014. Effects of Quantitative Easing on Asia:Capital Flows and Financial Markets[J]. The Singapore Economic Review,59 (3):165-180. [13]Curdia,V.,M.Woodford. 2009. Conventional and Unconventional Monetary Policy[R]. Staff Report. [14]Eichengreen,B.,P.Gupta. 2014. Tapering Talk:The Impact of Expectations of Reduced Federal Reserve Security Purchases on Emerging Markets[R]. Policy Research Working Paper. [15]Fratzscher,M.,M.L.Duca,R.Straub. 2012. Quantitative Easing,Portfolio Choice and International Capital Flows[R]. Draft,European Central Bank,Frankfurt,No.22. [16]Hausken,K.,M.Ncube. 2013. Quantitative Easing and Its Impact in the US,Japan,the UK and Europe[M]. Springer New York,56-89. [17]Lyonnet,V.,Werner R. 2012. Lessons from the Bank of England on “Quantitative Easing” and Other “Unconventional” Monetary Policies[J]. International Review of Financial Analysis,25:94-105. [18]Mojon,B.,G.Peersman. 2001. A Var Description of the Effects of Monetary Policy in the Individual Countries of the Euro Area[R]. European Central Bank Working Paper Series,92:1-49. [19]Morgan,P. 2011. Impact of US Quantitative Easing Policy on Emerging Asia[R]. ADBI Working Papers. [20]Nechio,F. 2014. Fed Tapering News and Emerging Markets[J]. FRBSF Economic Letter,6:6-14. [21]Spantig,K. 2012. International Monetary Policy Spillovers in an Asymmetric World Monetary System:The United States and China[R]. Working Papers on Global Financial Markets. [22]陈钊,陆铭,金煜.2004.中国人力资本和教育发展的区域差异:对于面板数据的估算[J].世界经济,(12):25-31. [23]储德银,崔莉莉.2014.中国财政政策产出效应的非对称性研究[J].财贸经济,(12):27-39. [24]储德银,童大龙.2012.中国财政政策对居民消费需求的非对称效应——基于流动性约束视角下一个新的分析框架[J].公共管理学报,(1):70-79. [25]戴金平,刘进财.2017.政府财政支出与区域经济增长非线性关系研究——基于中国省际面板的门槛检验[J].社会科学辑刊,(4):57-64. [26]范庆泉,周县华,潘文卿.2015.从生产性财政支出效率看规模优化:基于经济增长的视角[J].南开经济研究,(5):24-39. [27]郭庆旺,贾俊雪.2005.积极财政政策的全要素生产率增长效应[J].中国人民大学学报,(4):54-62. [28]金春雨,王伟强.2017.我国财政政策效应与经济周期波动的关联性分析[J].西安交通大学学报 (社会科学版),(3):28-35. [29]靳春平.2007.财政政策效应的空间差异性与地区经济增长[J].管理世界,(7):47-56. [30]李强,李书舒.2017.财政支出和金融发展对经济增长的影响:非线性效应与关联机制[J].财贸研究,(2):21-29. [31]潘文卿,范庆泉,周县华.2015.消费性财政支出效率与最优支出规模:基于经济增长的视角[J].统计研究,(11):18-25. [32]王立勇,李富强.2009.我国相机抉择财政政策效应非对称性的实证研究[J].数量经济技术经济研究,(1):58-66. [33]王立勇,刘文革.2009.财政政策非线性效应及其解释——兼论巴罗-格罗斯曼宏观一般非均衡模型在中国的适用性[J].经济研究,(7):65-78. [34]王秀丽,李雪松,张巍巍,蒋昇.2012.中国财政货币政策及其协同效应的DSGE模型分析[J].数量经济研究,3 (1):1-19. [35]王妍.2018.金融摩擦与财政支出的经济增长效应——资本积累渠道还是TFP渠道[J].经济问题探索,(9):91-101. [36]严成樑,龚六堂.2009.财政支出、税收与长期经济增长[J].经济研究,(6):4-15. [37]杨华,陈迅.2011.地方政府消费支出与经济增长非线性门限关系研究——来自我国省级面板数据的经验证据[J].经济问题,(8):20-23. [38]张淑翠.2011.我国财政支出对经济增长非线性效应——基于省级面板数据的平滑转移模型实证分析[J].财经研究,(8):135-144. [39]Auerbach,A.J.,Y.Gorodnichenko. 2012. Measuring the Output Responses to Fiscal Policy[J]. American Economic Journal:Economic Policy,4 (2):1-27. [40]Barro,R.J. 1990. Government Spending in a Simple Model of Economic Growth[J]. Journal of Political Economy,98 (5):103-125. [41]Baum,A.,G.B.Koester. 2011. The Impact of Fiscal Policy on Economic Activity over the Business Cycle[R]. Deutsche Bundes Bank Discussion Paper,No.3. [42]Bruneau,C.,O.D.Band. 1999. Fiscal Policy in the Transition to Monetary Union:A Structural VAR Model[R]. Working Paper. [43]Chib,S. 1996. Calculation Posterior Distributions and Modal Estimates in Markov Mixture Models[J]. Journal of Econometrics,75:79-97. [44]Corsetti,G.,G.J.Mueller. 2012. What Determines Government Spending Multipliers[J]. Economic Policy,27:521-565. [45]Frühwirth-Schnatter,S.,S.Kaufmann. 2006. How Do Changes in Monetary Policy Affect Bank Lending?—An Analysis of Austrian Bank Data[J]. Journal of Applied Econometrics,21 (3):275-305. [46]Frühwirth-Schnatter,Sylvia. 2001. Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models[J]Journal of the American Statistical Association,96:194-209. [47]Giavazzi,F.,M.Pagano. 1990. Can Severe Fiscal Contractions Be Expansionary?—Tales of Two Small European Countries[J]. NBER Macroeconomics Annual,(5):75-111. [48]Mittnik,S.,W.Semmler. 2012. Regime Dependence of the Fiscal Multiplier[J]. Journal of Economic Behavior & Organization,83 (3):502-522. [49]Sheehey,E.J. 1993. The Effect of Government Size on Economic Growth[J]. Eastern Economic Journal,19 (3):321-328. [50]Tagkalakis,A. 2008. The Effects of Fiscal Policy on Consumption in Recessions and Expansions[J]. Journal of Public Economics,92 (5-6):1486-1508. [51]邓柏峻,李仲飞,张浩.2014.限购政策对房价的调控有效吗[J].统计研究,31 (11):50-57. [52]邓慧慧,虞义华,龚铭.2013.空间溢出视角下的财政分权、公共服务与住宅价格[J].财经研究,(4):48-56. [53]黄飞雪.2011.中国东中西部城市房价波动的涟漪效应——以中国东中西部代表的九城市为例[J].运筹与管理,20 (5):206-215. [54]刘金全,孙玉祥,毕振豫.2019.信贷扩张、房价波动与经济增长的时变关联机制研究[J].数量经济研究,(2):124-136. [55]王鹤.2012.基于空间计量的房地产价格影响因素分析[J].经济评论,(1):48-56. [56]吴文斌.2012.中国区域房价β收敛的空间计量分析[J].统计与决策,(1):130-132. [57]余华义,黄燕芬.2015.利率效果区域异质性、收入跨区影响与房价溢出效应[J].经济理论与经济管理,(8):65-80. [58]张凌.2008.城市住房价格波动差异及连锁反应研究[M].经济科学出版社. [59]Alexander,C.,M.Barrow. 1994. Seasonality and Cointegration of Regional House Prices in the UK[J]. Urban Studies,31 (10):1667-1689. [60]Balcilar,M.,A.Beyene,R.Gupta,M.Seleteng. 2013. Ripple Effects in South African House Prices[J]. Urban Studies,50 (5):876-894. [61]Birchenhall,C.,D.Osborn,M.Sensier. 2010. Predicting UK Business Cycle Regimes[J]. Scottish Journal of Political Economy,48 (2):179-195. [62]Blake,J.P.,B.Gharleghi. 2018. The Ripple Effect at an Inter-suburban Level in the Sydney Metropolitan Area[J]. International Journal of Housing Markets and Analysis,11 (1):2-33. [63]Cook,S. 2003. The Convergence of Regional House Prices in the UK[J]. Urban Studies,40 (11):2285-2294. [64]Cook,S. 2005a. Detecting Long-run Relationships in Regional House Prices in the UK[J]. International Review of Applied Economics,19 (1):107-118. [65]Cook,S. 2005b. Regional House Price Behaviour in the UK:Application of a Joint Testing Procedure[J]. Phy-sica A:Statistical Mechanics and Its Applications,345 (3-4):611-621. [66]Cook,S. 2012. Beta-convergence and the Cyclical Dynamics of UK Regional House Prices[J]. Urban Studies,49 (49):203-218. [67]Cook,S.,C.Thomas. 2003. An Alternative Approach to Examining the Ripple Effect in UK House Prices[J]. Applied Economics Letters,10 (13):849-851. [68]Cook,S.,D.Watson. 2016. A New Perspective on the Ripple Effect in the UK Housing Market:Comovement,Cyclical Subsamples and Alternative Indices[J]. Urban Studies,53 (14):3048-3062. [69]Elliott,G.,T.J.Rothenberg,J.H.Stock. 1996. Efficient Tests for an Autoregressive Unit Root[J]. Econometrica,64 (4):813-837. [70]Giussani,B.,G.Hadjimatheou. 1991. Modeling Regional House Prices in the United Kingdom[J]. Papers in Regional Science,70 (2):201-219. [71]Giussani,B.,G.Hadjimatheou. 1992. House Prices:An Econometric Model for the UK[J]. Netherlands Journal of Housing & the Built Environment,7 (1):31-58. [72]Granger,C. 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods[J]. Econometrica,37 (3):424-438. [73]Gray,D. 2012. District House Price Movements in England and Wales 1997-2007:An Exploratory Spatial Data Analysis Approach[J]. Urban Studies,49 (7):1411-1434. [74]Hausman,J.A. 1978. Specification Tests in Econometrics[J]. Econometrica,46 (6):1251-1271. [75]Holly,S.,N.Jones. 2004. House Prices since the 1940s:Cointegration,Demography and Asymmetries[J]. Economic Modelling,14 (4):549-565. [76]Holmans,A.E. 1990. House Prices:Changes through Time at National and Sub-national Level[R]. Government Economic Service Working Paper. [77]Hudson,C.,J.Hudson,B.Morley. 2018. Differing House Price Linkages across UK Regions:A Multi-dimensional Recursive Ripple Model[J]. Urban Studies,55 (8):1636-1654. [78]Kwiatkowski,D.,P.C.B.Phillips,P.Schmidt,Y.Shin. 1992. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root:How Sure Are We that Economic Time Series Have a Unit Root?[J]. Journal of Econometrics,54 (1-3):159-178. [79]Lean,H.,R.Smyth. 2013. Regional House Prices and the Ripple Effect in Malaysia[J]. Urban Studies,50 (5):895-922. [80]Lee,C.,M.Chien. 2011. Empirical Modeling of Regional House Prices and the Ripple Effect[J]. Urban Studies,48 (10):2029-2047. [81]MacDonald,R.,M.P.Taylor. 1993. Regional House Prices in Britain:Long-run Relationships and Short-run Dynamics[J]. Scottish Journal of Political Economy,40 (1):43-55. [82]Meen,G. 1996. Spatial Aggregation,Spatial Dependence and Predictability in the UK Housing Market[J]. Housing Studies,11 (3):345-372. [83]Milcheva,S.,B.Zhu. 2015. Bank Integration and Co-movements across Housing Markets[J]. Journal of Banking & Finance,72:S148-S171. [84]Payne,J. 2012. The Long-run Relationship among Regional Housing Prices:An Empirical Analysis of the U.S.[J]. Journal of Regional Analysis and Policy,42 (1):28-35. [85]Pesaran,M.H.,A.Timmermann. 1992. A Simple Nonparametric Test of Predictive Performance[J]. Journal of Business & Economic Statistics,10 (4):461-465. [86]Zhang,D.,G.Z.Fan. 2019. Regional Spillover and Rising Connectedness in China’s Urban Housing Prices[J]. Regional Studies,53 (6):861-873. [87]柏菊,刘碧云.2006.环境要素禀赋的国际贸易效应分析[J].海峡科学,(4):1-2. [88]曹慧平,陈清萍.2011.环境要素约束下H-O模型的理论与实证检验[J].国际贸易问题,(11):148-156. [89]邓可祝.2007.环境补贴研究[J].特区经济,(5):135-137. [90]封福育.2014.环境规制与经济增长的多重均衡:理论与中国经验[J].当代财经,(11):14-24. [91]黄永春,石秋平.2015.中国区域环境效率与环境全要素的研究——基于包含R&D投入的SBM模型的分析[J].中国人口·资源与环境,25 (12):25-34. [92]李本.2008.WTO环境补贴政策的未来发展及中国的因应之策[J].华东师范大学学报(哲学社会科学版),(3):87-92. [93]李晓峰.2004.征税,还是补贴——对当前环境经济政策的反思[J].中国人口·资源与环境,14 (2):24-29. [94]刘海英,丁莹.2019.环境补贴能实现经济发展与治污减排的双赢吗?——基于隐性经济的视角[J].西安交通大学学报(社会科学版),39 (5):83-91. [95]刘海英,钟莹.2019.中国工业节能与减排效率一致性及影响因素——基于NDDF-面板Tobit两步法的实证研究[J].数量经济研究,10 (1):67-81. [96]马立平,张鹏,胡佩.2016.要素禀赋对中国地区经济发展影响的统计分析——基于30个省市的面板数据分位数回归[J].贵州财经大学学报,(4):94-102. [97]王荣,王英.2017.FDI技术溢出效应与长三角装备制造业增加值率[J].管理现代化,37 (5):29-32. [98]胥力伟.2011.环境补贴经济效应的定量研究方法——PARRYA模型及其对我国的借鉴[J].经济视角(下旬刊),(1):41-43. [99]姚爱萍.2005.环境补贴对国际贸易的影响及我国应采取的对策[J].上海对外经贸大学学报,(4):29-32. [100]游达明,朱桂菊.2014.不同竞合模式下企业生态技术创新最优研发与补贴[J].中国工业经济,(8):122-134. [101]余东华,张明志.2016.“异质性难题”化解与碳排放EKC再检验——基于门限回归的国别分组研究[J].中国工业经济,(7):57-73. [102]袁其刚,戴金平,刘斌.2011.贸易结构变化促进经济增长途径的比较分析——基于中国数据的经验研究[J].世界经济研究,(11):53-57. [103]Hansen,B.E. 1996. Inference When a Nuisance Parameter Is not Identified under the Null Hypothesis[J]. Econometrica,64 (2):413-430. [104]Hansen,B.E. 2000. Sample Splitting and Threshold Estimation[J]. Econometrica,68 (3):575-603. [105]Hurley,J,N.J.Buckley,K.Cuff,et al. 2012. Determinants of Eco-innovations by Type of Environmental Impact:The Role of Regulatory Push/Pull,Technology Push and Market Pull[J]. ZEW Discussion Papers,78 (32):112-122. [106]Porter,M.E.,C.V.D.Linde. 1996. Green and Competitive:Ending the Stalemate[J]. Harvard Business Review,28(6):128-129. [107]邓柏盛,宋德勇.2008.我国对外贸易、FDI与环境污染之间关系的研究:1995-2005[J].国际贸易问题,(4):103-110. [108]杜龙政,林润辉.2018.对外直接投资、逆向技术溢出与省域创新能力——基于中国省际面板数据的门槛回归分析[J].中国软科学,(1):149-162. [109]江洪,韩晓晨.2018.FDI技术溢出对能源效率作用机制的空间异质性研究——基于不同吸收能力门槛的实证研究[J].数量经济研究,(1):141-156. [110]雷明,虞晓雯.2015.我国低碳经济增长的测度和动态作用机制——基于非期望DEA和面板VAR模型的分析[J].经济科学,(2):44-57. [111]李梅,柳士昌.2012.对外直接投资逆向技术溢出的地区差异和门槛效应——基于中国省际面板数据的门槛回归分析[J].管理世界,(1):21-32. [112]李惠茹,张鹏杨.2015.FDI“碳光环”效应对我国节能减碳影响研究[J].现代财经(天津财经大学学报),(8):3-12. [113]马丽梅,张晓.2014.中国雾霾污染的空间效应及经济、能源结构影响[J].中国工业经济,(4):19-31. [114]邵帅,李欣,曹建华,杨莉莉.2016.中国雾霾污染治理的经济政策选择——基于空间溢出效应的视角[J].经济研究,(9):73-88. [115]宋德勇,易艳春.2011.外商直接投资与中国碳排放[J].中国人口·资源与环境,21(1):49-52. [116]涂正革,谌仁俊.2015.排污权交易机制在中国能否实现波特效应?[J].经济研究,(7):160-173. [117]王少剑,黄永源,周钰荃.2019.中国城市碳排放强度的空间溢出效应及驱动因素探究(英文)[J]. Journal of Geographical Sciences,29 (2):73-94. [118]王为东,卢娜,张财经.2018.空间溢出效应视角下低碳技术创新对气候变化的响应[J].中国人口·资源与环境,28 (8):25-33. [119]向堃,宋德勇.2015.中国省域pm2.5污染的空间实证研究[J].中国人口·资源与环境,(9):153-159. [120]杨连星,罗玉辉.2017.中国对外直接投资与全球价值链升级[J].数量经济技术经济研究,(6):54-70. [121]杨万平,袁晓玲.2008.对外贸易、FDI对环境污染的影响分析——基于中国时间序列的脉冲响应函数分析:1982-2006[J].世界经济研究,(12):62-68. [122]姚奕,倪勤.2013.外商直接投资对碳强度的影响——基于中国省级动态面板数据的实证研究[J].数理统计与管理,(1):113-122. [123]尹东东,张建清.2016.我国对外直接投资逆向技术溢出效应研究——基于吸收能力视角的实证分析[J].国际贸易问题,(1):109-120. [124]张成.2011.内资和外资:谁更有利于环境保护——来自我国工业部门面板数据的经验分析[J].国际贸易问题,(2):98-106. [125]郑佳佳,喻晓蕾.2015.FDI的引进加剧了我国的碳排放吗?——基于市场化角度的再分析[J].中国管理科学,(S1):778-785. [126]周力,庞辰晨.2013.中国对外直接投资的母国环境效应研究——基于区域差异的视角[J].中国人口·资源与环境,23(8):131-139. [127]周杰琦,汪同三.2017.FDI、要素市场扭曲与碳排放绩效——理论与来自中国的证据[J].国际贸易问题,(7):96-107. [128]Bitzer,Jürgen,Holger Görg. 2009. Foreign Direct Investment,Competition and Industry Performance[J]. The World Economy,32 (2):221-233. [129]Braunerhjelm,P.,R.Svensson. 1996. Host Country Characteristics and Agglomeration in Foreign Direct Investment[J]. Applied Economics,28 (7):833-840. [130]Eskeland,G.S.,A.E.Harrison. 2003. Moving to Greener Pastures?—Multinationals and the Pollution Haven Hypothesis[J]. Journal of Development Economics,70 (1):1-23. [131]Fosfuri,A.,M.Motta. 1999. Multinationals without Advantages[J]. Scandinavian Journal of Economics,101 (4):617-630. [132]Grossman,G.M.,A.B.Krueger. 1991. Environmental Impacts of a North American Free Trade Agreement[R]. NBER Working Papers,No.W3914. [133]Guo,L.L.,Y.Qu,M.L.Tseng. 2017. The Interaction Effects of Environmental Regulation and Technological Innovation on Regional Green Growth Performance[J]. Journal of Cleaner Production,162:894-902 [134]Herzer,Dierk. 2011. The Long-run Relationship between Outward Foreign Direct Investment and Total Factor Productivity:Evidence for Developing Countries[J]. Journal of Development Studies,47 (5):767-785. [135]Jorgenson,A.K. 2007. Does Foreign Investment Harm the Air We Breathe and the Water We Drink?—A Cross-national Study of Carbon Dioxide Emissions and Organic Water Pollution in Less-developed Countries[J]. Organization Environment,20 (2):137-156. [136]Kirkpatrick,C.,K.Shimamoto. 2008. The Effect of Environmental Regulation on the Location Choice of Japanese Foreign Direct Investment[J]. Applied Economics,40 (11):1399-1409. [137]Kogut,B.,S.J.Chang. 1991. Technological Capabilities and Japanese Foreign Direct Investment in the United States[J]. The Review of Economics and Statistics,73 (3):401-413. [138]Myles,S. 2013. Does FDI Promote Mena Region’s Environment Quality?—Pollution Halo or Pollution Haven Hypothesis[J]. International Journal,1 (6):92-100. [139]Neven,D.,G.Siotis. 1996. Technology Sourcing and FDI in the EC:An Empirical Evaluation[J]. International Journal of Industrial Organization,14 (5):543-560. [140]Sinn,H. 2008. Public Policies against Global Warming:A Supply Side Approach[J]. International Tax and Public Finance,(15):360-394. [141]Siotis,G. 1999. Foreign Direct Investment Strategies and Firms’ Capabilities[J]. Journal of Economics Management Strategy,8 (2):251-270. [142]Teece,D.J. 1992. Foreign Investment and Technological Development in Silicon Valley[J]. California Management Review,34 (2):88-106. [143]Yamawaki,H. 1993. Technological Advantage,International Competitiveness and Entry of Multinational Firms[J]. Rivista Internazionale Di Scienze Sociali,101 (3):267-273. [144]Zhou,Yu,J.Jiang,B.Ye,B.Hou. 2019. Green Spillovers of Outward Foreign Direct Investment on Home Countries:Evidence from China’s Province-level Data[J]. Journal of Cleaner Production,215:829-844. [145]陈信元,张田余,陈冬华.2001.预期股票收益的横截面多因素分析:来自中国证券市场的经验证据[J].金融研究,(6):22-35. [146]方毅,孟佶贤,曲俊雪.2019.基于市场异象的多因子定价模型比较研究[J].数量经济研究,10 (1):82-96. [147]王茵田,朱英姿.2011.中国股票市场风险溢价研究[J].金融研究,(7):152-166. [148]徐德财,初梓健,周津宇.2019.由实证检验到理论猜想:证券价格与价值偏离的时变路径及其生成机理[J].数量经济研究,(3):74-99. [149]张矢的,高明宇,吴斌.2014.未充分分散投资下的资本资产定价模型:基于中国A股市场的实证检验[J].管理评论,26 (10):24-37. [150]Barberis,N.,R.Greenwood,L.Jin,,A.Shleifer. 2018. Extrapolation and Bubbles[J]. Journal of Financial Economics,129 (2):203-227. [151]Benjamini,Y.,Y.Hochberg. 1995. Controlling the False Discovery Rate:A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society:Series B,57:289-300. [152]Bonferroni,C.E. 1936. Teoria Statistica Delle Classi e Calcolo Delle Probabilità[J]. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,8:3-62 [153]Campbell,J.Y.,M.Lettau,B.G.Malkiel,Y.Xu. 2001. Have Individual Stocks Become More Volatile?—An Empirical Exploration of Idiosyncratic Risk[J]. Journal of Finance,56 (1):1-43. [154]Dunn,O.J. 1959. Estimation of the Medians for Dependent Variables[J]. Annals of Mathematical Statistics,30 (1):192-197. [155]Estrada,J.,A.P.Serra. 2005. Risk and Return in Emerging Markets:Family Matters[J]. Journal of Multinational Financial Management,15 (3):257-272. [156]Fama,E.F.,K.R.French. 1992. The Cross-section of Expected Stock Returns[J]. The Journal of Finance,47 (2):427-465. [157]Fama,E.F.,K.R.French. 1993. Common Risk Factors in the Returns on Stocks and Bonds[J]. Journal of Financial Economics,33 (1):3-56. [158]Goetzmann,W.N. 2016. Bubble Investing:Learning from History[R]. NBER Working Papers,3:149-168. [159]Hong,H.,J.C.Stein. 2007. Disagreement and the Stock Market[J]. Journal of Economic Perspectives,21 (2):109-128. [160]Huang,J.,J.Wang. 2009. Liquidity and Market Crashes[J]. Review of Financial Studies,22 (7):2607-2643. [161]Jegadeesh,N.,S.Titman. 1993. Returns to Buying Winners and Selling Losers:Implications for Stock Market Efficiency[J]. Journal of Finance,48 (1):65-91. [162]Mackay,C. 1841. Extraordinary Popular Delusions and the Madness Of Crowds[M]. Farrar,Straus and Giroux. [163]Ofek,E.,M.Richardson. 2003. Dotcom Mania:The Rise and Fall of Internet Stock Prices[J]. Journal of Finance,58 (3):1113-1137. [164]Shiller,R. 2000. Irrational Exuberance[M]. Princeton University Press. [165]陈磊,高铁梅.1994.利用Stock-Watson型景气指数对宏观经济形势的分析和预测[J].数量经济技术经济研究,(5):53-59. [166]郭国峰,郑召锋.2010.中国宏观经济先行指数和一致指数应用效果检验与改进[J].数量经济技术经济研究,27 (10):131-144. [167]刘金全,刘志刚.2005.我国经济周期波动中实际产出波动性的动态模式与成因分析[J].经济研究,(3):26-35. [168]刘金全,王大勇.2003.经济增长的阶段性假说和波动性溢出效应检验[J].财经研究,(5):3-7. [169]王金明,程建华,杨晓光.2007.SW型先行景气指数建设的实证研究[J].中国管理科学,(4):116-123. [170]郑挺国,王霞.2013.中国经济周期的混频数据测度及实时分析[J].经济研究,48 (6):58-70. [171]Blanchard,Olivier,John Simon. 2001. The Long and Large Decline in U.S.Output Volatility[J]. Brookings Papers on Economic Activity,32 (1):135-174. [172]Carriero,John. 2005. Spinoza on Final Causality[J]. Oxford Studies in Early Modern Philosophy,(2):105-147. [173]Friedman,Milton. 1993. The “Plucking Model” of Business Fluctuations Revisited[J]. Economic Inquiry,31 (2):171-177. [174]Girardin,Eric. 2005. Growth-cycle Features of East Asian Countries:Are They Similar?[J]. International Journal of Finance & Economics,(10):143-156. [175]Hamilton,James D. 1989. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle[J]. Econometrica,57 (2):357-384. [176]Mitchell,Wesley Clair,Arthur F.Burns. 1938. Statistical Indicators of Cyclical Revivals[J]. Business Cycle Indicators,(1):162-183. [177]Sichel,Daniel E. 1994. Inventories and the Three Phases of the Business Cycle[J]. Journal of Business & Economic Statistics,(12):269-277. [178]Sims,Christopher A. 1992. Interpreting the Macroeconomic Time Series Facts:The Effects of Monetary Policy[J]. European Economic Review,36 (5):975-1000. [179]Stock,James,Mark Watson. 1989. New Indexes of Coincident and Leading Economic Indicators[J]. NBER Macroeconomics Annual,(4):351-394. [180]丁绪辉,贺菊花,王柳元.2018.考虑非合意产出的省际水资源利用效率及驱动因素研究——基于SE-SBM与Tobit模型的考察[J].中国人口·资源与环境,28 (1):157-161. [181]董战峰,喻恩源,裘浪,等.2012.基于DEA模型的中国省级区域水资源效率评价[J].生态经济,(10):43-47. [182]廖虎昌,董毅明.2011.基于DEA和Malmquist指数的西部12省水资源利用效率研究[J].资源科学,33 (2):273-279. [183]马海良,丁元卿,王蕾.2017.绿色水资源利用效率的测度和收敛性分析[J].自然资源学报,32 (3):406-417. [184]马海良,黄德春,张继国.2012.考虑非合意产出的水资源利用效率及影响因素研究[J].中国人口·资源与环境,22 (10):35-42. [185]买亚宗,孙福丽,石磊,等.2014.基于DEA的中国工业水资源利用效率评价研究[J].干旱区资源与环境,28 (11):42-47. [186]钱文婧,贺灿飞.2011.中国水资源利用效率区域差异及影响因素研究[J].中国人口·资源与环境,21 (2):54-60. [187]孙爱军,方先明.2010.中国省际水资源利用效率的空间分布格局及决定因素[J].中国人口·资源与环境,20 (5):139-145. [188]孙才志,姜坤,赵良仕.2017.中国水资源绿色效率测度及空间格局研究[J].自然资源学报,32 (12):1999-2011. [189]孙才志,马奇飞,赵良仕.2018.中国东、中、西三大区域水资源绿色效率时空演变特征与收敛性分析[J].地理科学进展,37 (7):901-911. [190]田萍,汪制邦.2019.我国第三产业全要素生产率区域差异及影响因素研究[J].数量经济研究,10 (3):100-120. [191]汪克亮,刘悦,史利娟,等.2017.长江经济带工业绿色水资源效率的时空分异与影响因素——基于EBM-Tobit模型的两阶段分析[J].资源科学,39 (8):1522-1534. [192]王昕,陆迁.2014.中国农业水资源利用效率区域差异及趋同性检验实证分析[J].软科学,28 (11):133-137. [193]杨骞,刘华军.2015.污染排放约束下中国农业水资源效率的区域差异与影响因素[J].数量经济技术经济研究,(1):114-128. [194]余泳泽.2017.异质性视角下中国省际全要素生产率再估算:1978-2012[J].经济学(季刊),16 (3):1051-1072. [195]张玮,刘宇.2018.长江经济带绿色水资源利用效率评价——基于EBM模型[J].华东经济管理,32 (3):67-73. [196]赵晨,王远,谷学明,等.2013.基于数据包络分析的江苏省水资源利用效率[J].生态学报,33 (5):1636-1644. [197]赵良仕,孙才志,郑德凤.2014.中国省际水资源利用效率与空间溢出效应测度[J].地理学报,69 (1):121-133. [198]Andersen,P.,N.C.Petersen. 1993. A Procedure for Ranking Efficient Units in Data Envelopment Analysis[J]. Management Science,39 (10):1261-1264. [199]Tone,K.,M.Tsutsui. 2010. An Epsilon-based Measure of Efficiency in DEA:A Third Pole of Technical Efficiency[J]. European Journal of Operational Research,207:1554-1563. [200]蔡伟宏,李惠娟.2017.中、日、韩服务贸易的东亚分工地位比较——基于增加值贸易的视角[J].经济经纬,34 (5):75-80. [201]岑丽君.2015.中国在全球生产网络中的分工与贸易地位——基于TiVA数据与GVC指数的研究[J].国际贸易问题,(1):3-13+131. [202]刘琳.2015.中国参与全球价值链的测度与分析——基于附加值贸易的考察[J].世界经济研究,(6):71-83+128. [203]孙浦阳,韩帅,许启钦.2013.产业集聚对劳动生产率的动态影响[J].世界经济,36 (3):33-53. [204]陶长琪,徐志琴.2019.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,10 (1):16-31. [205]文东伟,冼国明.2010.中国制造业的垂直专业化与出口增长[J].经济学(季刊),9 (2):467-494. [206]闫云凤.2018.中日韩服务业在全球价值链中的竞争力比较[J].现代日本经济,(1):48-59. [207]杨仁发.2013.产业集聚与地区工资差距——基于我国269个城市的实证研究[J].管理世界,29 (8):41-52. [208]尹伟华.2016.中日制造业参与全球价值链分工模式及地位分析——基于世界投入产出表[J].经济理论与经济管理,(5):100-112. [209]尹伟华.2018.全球价值链视角下中美农业双边贸易分解分析[J].世界经济研究,(6):3-11+135. [210]张龙,韩岳峰,张鑫.2015.中日分类服务贸易竞争力分解研究[J].世界经济研究,(5):52-59+128. [211]郑国姣,杨来科.2015.增加值贸易视角下的中日服务贸易再考察[J].经济问题探索,(8):99-105. [212]周升起,兰珍先,付华.2014.中国制造业在全球价值链国际分工地位再考察——基于Koopman等的“GVC地位指数”[J].国际贸易问题,(2):3-12. [213]Hummels,D.,J.Ishii,K.M.Yi. 2001. The Nature and Growth of Vertical Specialization in World Trade[J]. Journal of International Economics,54 (1):75-96. [214]Koopman,R.,W.M.Powers,Z.Wang,S.J.Wei. 2010. Give Credit Where Credit Is Due:Tracing Value Added in Global Production Chains[R]. NBER Working Paper Series,No.16426. [215]Krugman,P.,A.J.Venables. 1995. Globalization and the Inequality of Nations[J]. The Quarterly Journal of Economics,110 (4):857-880. [216]Stehrer,R.,N.Foster,G.de Vries. 2012. Value Added and Factors in Trade:A Comprehensive Approach[R]. WIOD Working Paper,No.7. [217]Subramanian,A.,M.Kessler. 2013. The Hyperglobalization of Trade and Its Future[J]. Social Science Electronic Publishing,27 (2):319-341. [218]Wang,Z.,S.J.Wei,K.Zhu. 2013. Quantifying International Production Sharing at the Bilateral and Sector Levels[R]. NBER Working Paper Series,No.19677. [219]李天国.2014.美国退出量化宽松对新兴经济体的传导机制研究——基于PVAR模型的实证分析[J].国际经济合作,(10):86-91. [220]李自磊,张云.2014.美国量化宽松政策对金砖四国溢出效应的比较研究——基于SVAR模型的跨国分析[J].财经科学,(4):22-31. [221]马理,余慧娟.2015.美国量化宽松货币政策对金砖国家的溢出效应研究[J].国际金融研究,(3):13-22. [222]聂菁,金洪飞.2015.美国量化宽松货币政策对中国行业出口的溢出效应研究[J].国际金融研究,(3):3-12. [223]唐旭茂.2015.美联储量化宽松政策对中国资本市场的冲击效应研究[J].世界经济研究,(6):12-23. [224]肖娱.2011.美国货币政策冲击的国际传导研究——针对亚洲经济体的实证分析[J].国际金融研究,(9):18-29. [225]张靖佳,孙浦阳,刘澜飚.2015.量化宽松政策、财富效应与企业出口[J].经济研究,(12):158-172. [226]张小宇,于依洋.2017.美国量化宽松与常规货币政策对中国实体经济溢出效应的实证检验[J].经济与管理研究,(1):25-36. [227]Arellano,M.,O.Bover. 1995. Another Look at the Instrumental Variable Estimation of Error-components Models[J]. Journal of Econometrics,68 (1):29-51. [228]Bernanke,B.S.,I.Mihov. 1998. Measuring Monetary Policy[J]. The Quarterly Journal of Economics,113 (3):869-902. [229]Bouraoui,T. 2015. The Effect of Reducing Quantitative Easing on Emerging Markets[J]. Applied Economics,47 (15):1562-1573. [230]Cho,D.,C.Rhee. 2014. Effects of Quantitative Easing on Asia:Capital Flows and Financial Markets[J]. The Singapore Economic Review,59 (3):165-180. [231]Curdia,V.,M.Woodford. 2009. Conventional and Unconventional Monetary Policy[R]. Staff Report. [232]Eichengreen,B.,P.Gupta. 2014. Tapering Talk:The Impact of Expectations of Reduced Federal Reserve Security Purchases on Emerging Markets[R]. Policy Research Working Paper. [233]Fratzscher,M.,M.L.Duca,R.Straub. 2012. Quantitative Easing,Portfolio Choice and International Capital Flows[R]. Draft,European Central Bank,Frankfurt,No.22. [234]Hausken,K.,M.Ncube. 2013. Quantitative Easing and Its Impact in the US,Japan,the UK and Europe[M]. Springer New York,56-89. [235]Lyonnet,V.,Werner R. 2012. Lessons from the Bank of England on “Quantitative Easing” and Other “Unconventional” Monetary Policies[J]. International Review of Financial Analysis,25:94-105. [236]Mojon,B.,G.Peersman. 2001. A Var Description of the Effects of Monetary Policy in the Individual Countries of the Euro Area[R]. European Central Bank Working Paper Series,92:1-49. [237]Morgan,P. 2011. Impact of US Quantitative Easing Policy on Emerging Asia[R]. ADBI Working Papers. [238]Nechio,F. 2014. Fed Tapering News and Emerging Markets[J]. FRBSF Economic Letter,6:6-14. [239]Spantig,K. 2012. International Monetary Policy Spillovers in an Asymmetric World Monetary System:The United States and China[R]. Working Papers on Global Financial Markets. [240]陈钊,陆铭,金煜.2004.中国人力资本和教育发展的区域差异:对于面板数据的估算[J].世界经济,(12):25-31. [241]储德银,崔莉莉.2014.中国财政政策产出效应的非对称性研究[J].财贸经济,(12):27-39. [242]储德银,童大龙.2012.中国财政政策对居民消费需求的非对称效应——基于流动性约束视角下一个新的分析框架[J].公共管理学报,(1):70-79. [243]戴金平,刘进财.2017.政府财政支出与区域经济增长非线性关系研究——基于中国省际面板的门槛检验[J].社会科学辑刊,(4):57-64. [244]范庆泉,周县华,潘文卿.2015.从生产性财政支出效率看规模优化:基于经济增长的视角[J].南开经济研究,(5):24-39. [245]郭庆旺,贾俊雪.2005.积极财政政策的全要素生产率增长效应[J].中国人民大学学报,(4):54-62. [246]金春雨,王伟强.2017.我国财政政策效应与经济周期波动的关联性分析[J].西安交通大学学报 (社会科学版),(3):28-35. [247]靳春平.2007.财政政策效应的空间差异性与地区经济增长[J].管理世界,(7):47-56. [248]李强,李书舒.2017.财政支出和金融发展对经济增长的影响:非线性效应与关联机制[J].财贸研究,(2):21-29. [249]潘文卿,范庆泉,周县华.2015.消费性财政支出效率与最优支出规模:基于经济增长的视角[J].统计研究,(11):18-25. [250]王立勇,李富强.2009.我国相机抉择财政政策效应非对称性的实证研究[J].数量经济技术经济研究,(1):58-66. [251]王立勇,刘文革.2009.财政政策非线性效应及其解释——兼论巴罗-格罗斯曼宏观一般非均衡模型在中国的适用性[J].经济研究,(7):65-78. [252]王秀丽,李雪松,张巍巍,蒋昇.2012.中国财政货币政策及其协同效应的DSGE模型分析[J].数量经济研究,3 (1):1-19. [253]王妍.2018.金融摩擦与财政支出的经济增长效应——资本积累渠道还是TFP渠道[J].经济问题探索,(9):91-101. [254]严成樑,龚六堂.2009.财政支出、税收与长期经济增长[J].经济研究,(6):4-15. [255]杨华,陈迅.2011.地方政府消费支出与经济增长非线性门限关系研究——来自我国省级面板数据的经验证据[J].经济问题,(8):20-23. [256]张淑翠.2011.我国财政支出对经济增长非线性效应——基于省级面板数据的平滑转移模型实证分析[J].财经研究,(8):135-144. [257]Auerbach,A.J.,Y.Gorodnichenko. 2012. Measuring the Output Responses to Fiscal Policy[J]. American Economic Journal:Economic Policy,4 (2):1-27. [258]Barro,R.J. 1990. Government Spending in a Simple Model of Economic Growth[J]. Journal of Political Economy,98 (5):103-125. [259]Baum,A.,G.B.Koester. 2011. The Impact of Fiscal Policy on Economic Activity over the Business Cycle[R]. Deutsche Bundes Bank Discussion Paper,No.3. [260]Bruneau,C.,O.D.Band. 1999. Fiscal Policy in the Transition to Monetary Union:A Structural VAR Model[R]. Working Paper. [261]Chib,S. 1996. Calculation Posterior Distributions and Modal Estimates in Markov Mixture Models[J]. Journal of Econometrics,75:79-97. [262]Corsetti,G.,G.J.Mueller. 2012. What Determines Government Spending Multipliers[J]. Economic Policy,27:521-565. [263]Frühwirth-Schnatter,S.,S.Kaufmann. 2006. How Do Changes in Monetary Policy Affect Bank Lending?—An Analysis of Austrian Bank Data[J]. Journal of Applied Econometrics,21 (3):275-305. [264]Frühwirth-Schnatter,Sylvia. 2001. Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models[J]Journal of the American Statistical Association,96:194-209. [265]Giavazzi,F.,M.Pagano. 1990. Can Severe Fiscal Contractions Be Expansionary?—Tales of Two Small European Countries[J]. NBER Macroeconomics Annual,(5):75-111. [266]Mittnik,S.,W.Semmler. 2012. Regime Dependence of the Fiscal Multiplier[J]. Journal of Economic Behavior & Organization,83 (3):502-522. [267]Sheehey,E.J. 1993. The Effect of Government Size on Economic Growth[J]. Eastern Economic Journal,19 (3):321-328. [268]Tagkalakis,A. 2008. The Effects of Fiscal Policy on Consumption in Recessions and Expansions[J]. Journal of Public Economics,92 (5-6):1486-1508. [269]邓柏峻,李仲飞,张浩.2014.限购政策对房价的调控有效吗[J].统计研究,31 (11):50-57. [270]邓慧慧,虞义华,龚铭.2013.空间溢出视角下的财政分权、公共服务与住宅价格[J].财经研究,(4):48-56. [271]黄飞雪.2011.中国东中西部城市房价波动的涟漪效应——以中国东中西部代表的九城市为例[J].运筹与管理,20 (5):206-215. [272]刘金全,孙玉祥,毕振豫.2019.信贷扩张、房价波动与经济增长的时变关联机制研究[J].数量经济研究,(2):124-136. [273]王鹤.2012.基于空间计量的房地产价格影响因素分析[J].经济评论,(1):48-56. [274]吴文斌.2012.中国区域房价β收敛的空间计量分析[J].统计与决策,(1):130-132. [275]余华义,黄燕芬.2015.利率效果区域异质性、收入跨区影响与房价溢出效应[J].经济理论与经济管理,(8):65-80. [276]张凌.2008.城市住房价格波动差异及连锁反应研究[M].经济科学出版社. [277]Alexander,C.,M.Barrow. 1994. Seasonality and Cointegration of Regional House Prices in the UK[J]. Urban Studies,31 (10):1667-1689. [278]Balcilar,M.,A.Beyene,R.Gupta,M.Seleteng. 2013. Ripple Effects in South African House Prices[J]. Urban Studies,50 (5):876-894. [279]Birchenhall,C.,D.Osborn,M.Sensier. 2010. Predicting UK Business Cycle Regimes[J]. Scottish Journal of Political Economy,48 (2):179-195. [280]Blake,J.P.,B.Gharleghi. 2018. The Ripple Effect at an Inter-suburban Level in the Sydney Metropolitan Area[J]. International Journal of Housing Markets and Analysis,11 (1):2-33. [281]Cook,S. 2003. The Convergence of Regional House Prices in the UK[J]. Urban Studies,40 (11):2285-2294. [282]Cook,S. 2005a. Detecting Long-run Relationships in Regional House Prices in the UK[J]. International Review of Applied Economics,19 (1):107-118. [283]Cook,S. 2005b. Regional House Price Behaviour in the UK:Application of a Joint Testing Procedure[J]. Phy-sica A:Statistical Mechanics and Its Applications,345 (3-4):611-621. [284]Cook,S. 2012. Beta-convergence and the Cyclical Dynamics of UK Regional House Prices[J]. Urban Studies,49 (49):203-218. [285]Cook,S.,C.Thomas. 2003. An Alternative Approach to Examining the Ripple Effect in UK House Prices[J]. Applied Economics Letters,10 (13):849-851. [286]Cook,S.,D.Watson. 2016. A New Perspective on the Ripple Effect in the UK Housing Market:Comovement,Cyclical Subsamples and Alternative Indices[J]. Urban Studies,53 (14):3048-3062. [287]Elliott,G.,T.J.Rothenberg,J.H.Stock. 1996. Efficient Tests for an Autoregressive Unit Root[J]. Econometrica,64 (4):813-837. [288]Giussani,B.,G.Hadjimatheou. 1991. Modeling Regional House Prices in the United Kingdom[J]. Papers in Regional Science,70 (2):201-219. [289]Giussani,B.,G.Hadjimatheou. 1992. House Prices:An Econometric Model for the UK[J]. Netherlands Journal of Housing & the Built Environment,7 (1):31-58. [290]Granger,C. 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods[J]. Econometrica,37 (3):424-438. [291]Gray,D. 2012. District House Price Movements in England and Wales 1997-2007:An Exploratory Spatial Data Analysis Approach[J]. Urban Studies,49 (7):1411-1434. [292]Hausman,J.A. 1978. Specification Tests in Econometrics[J]. Econometrica,46 (6):1251-1271. [293]Holly,S.,N.Jones. 2004. House Prices since the 1940s:Cointegration,Demography and Asymmetries[J]. Economic Modelling,14 (4):549-565. [294]Holmans,A.E. 1990. House Prices:Changes through Time at National and Sub-national Level[R]. Government Economic Service Working Paper. [295]Hudson,C.,J.Hudson,B.Morley. 2018. Differing House Price Linkages across UK Regions:A Multi-dimensional Recursive Ripple Model[J]. Urban Studies,55 (8):1636-1654. [296]Kwiatkowski,D.,P.C.B.Phillips,P.Schmidt,Y.Shin. 1992. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root:How Sure Are We that Economic Time Series Have a Unit Root?[J]. Journal of Econometrics,54 (1-3):159-178. [297]Lean,H.,R.Smyth. 2013. Regional House Prices and the Ripple Effect in Malaysia[J]. Urban Studies,50 (5):895-922. [298]Lee,C.,M.Chien. 2011. Empirical Modeling of Regional House Prices and the Ripple Effect[J]. Urban Studies,48 (10):2029-2047. [299]MacDonald,R.,M.P.Taylor. 1993. Regional House Prices in Britain:Long-run Relationships and Short-run Dynamics[J]. Scottish Journal of Political Economy,40 (1):43-55. [300]Meen,G. 1996. Spatial Aggregation,Spatial Dependence and Predictability in the UK Housing Market[J]. Housing Studies,11 (3):345-372. [301]Milcheva,S.,B.Zhu. 2015. Bank Integration and Co-movements across Housing Markets[J]. Journal of Banking & Finance,72:S148-S171. [302]Payne,J. 2012. The Long-run Relationship among Regional Housing Prices:An Empirical Analysis of the U.S.[J]. Journal of Regional Analysis and Policy,42 (1):28-35. [303]Pesaran,M.H.,A.Timmermann. 1992. A Simple Nonparametric Test of Predictive Performance[J]. Journal of Business & Economic Statistics,10 (4):461-465. [304]Zhang,D.,G.Z.Fan. 2019. Regional Spillover and Rising Connectedness in China’s Urban Housing Prices[J]. Regional Studies,53 (6):861-873. [305]柏菊,刘碧云.2006.环境要素禀赋的国际贸易效应分析[J].海峡科学,(4):1-2. [306]曹慧平,陈清萍.2011.环境要素约束下H-O模型的理论与实证检验[J].国际贸易问题,(11):148-156. [307]邓可祝.2007.环境补贴研究[J].特区经济,(5):135-137. [308]封福育.2014.环境规制与经济增长的多重均衡:理论与中国经验[J].当代财经,(11):14-24. [309]黄永春,石秋平.2015.中国区域环境效率与环境全要素的研究——基于包含R&D投入的SBM模型的分析[J].中国人口·资源与环境,25 (12):25-34. [310]李本.2008.WTO环境补贴政策的未来发展及中国的因应之策[J].华东师范大学学报(哲学社会科学版),(3):87-92. [311]李晓峰.2004.征税,还是补贴——对当前环境经济政策的反思[J].中国人口·资源与环境,14 (2):24-29. [312]刘海英,丁莹.2019.环境补贴能实现经济发展与治污减排的双赢吗?——基于隐性经济的视角[J].西安交通大学学报(社会科学版),39 (5):83-91. [313]刘海英,钟莹.2019.中国工业节能与减排效率一致性及影响因素——基于NDDF-面板Tobit两步法的实证研究[J].数量经济研究,10 (1):67-81. [314]马立平,张鹏,胡佩.2016.要素禀赋对中国地区经济发展影响的统计分析——基于30个省市的面板数据分位数回归[J].贵州财经大学学报,(4):94-102. [315]王荣,王英.2017.FDI技术溢出效应与长三角装备制造业增加值率[J].管理现代化,37 (5):29-32. [316]胥力伟.2011.环境补贴经济效应的定量研究方法——PARRYA模型及其对我国的借鉴[J].经济视角(下旬刊),(1):41-43. [317]姚爱萍.2005.环境补贴对国际贸易的影响及我国应采取的对策[J].上海对外经贸大学学报,(4):29-32. [318]游达明,朱桂菊.2014.不同竞合模式下企业生态技术创新最优研发与补贴[J].中国工业经济,(8):122-134. [319]余东华,张明志.2016.“异质性难题”化解与碳排放EKC再检验——基于门限回归的国别分组研究[J].中国工业经济,(7):57-73. [320]袁其刚,戴金平,刘斌.2011.贸易结构变化促进经济增长途径的比较分析——基于中国数据的经验研究[J].世界经济研究,(11):53-57. [321]Hansen,B.E. 1996. Inference When a Nuisance Parameter Is not Identified under the Null Hypothesis[J]. Econometrica,64 (2):413-430. [322]Hansen,B.E. 2000. Sample Splitting and Threshold Estimation[J]. Econometrica,68 (3):575-603. [323]Hurley,J,N.J.Buckley,K.Cuff,et al. 2012. Determinants of Eco-innovations by Type of Environmental Impact:The Role of Regulatory Push/Pull,Technology Push and Market Pull[J]. ZEW Discussion Papers,78 (32):112-122. [324]Porter,M.E.,C.V.D.Linde. 1996. Green and Competitive:Ending the Stalemate[J]. Harvard Business Review,28(6):128-129. [325]邓柏盛,宋德勇.2008.我国对外贸易、FDI与环境污染之间关系的研究:1995-2005[J].国际贸易问题,(4):103-110. [326]杜龙政,林润辉.2018.对外直接投资、逆向技术溢出与省域创新能力——基于中国省际面板数据的门槛回归分析[J].中国软科学,(1):149-162. [327]江洪,韩晓晨.2018.FDI技术溢出对能源效率作用机制的空间异质性研究——基于不同吸收能力门槛的实证研究[J].数量经济研究,(1):141-156. [328]雷明,虞晓雯.2015.我国低碳经济增长的测度和动态作用机制——基于非期望DEA和面板VAR模型的分析[J].经济科学,(2):44-57. [329]李梅,柳士昌.2012.对外直接投资逆向技术溢出的地区差异和门槛效应——基于中国省际面板数据的门槛回归分析[J].管理世界,(1):21-32. [330]李惠茹,张鹏杨.2015.FDI“碳光环”效应对我国节能减碳影响研究[J].现代财经(天津财经大学学报),(8):3-12. [331]马丽梅,张晓.2014.中国雾霾污染的空间效应及经济、能源结构影响[J].中国工业经济,(4):19-31. [332]邵帅,李欣,曹建华,杨莉莉.2016.中国雾霾污染治理的经济政策选择——基于空间溢出效应的视角[J].经济研究,(9):73-88. [333]宋德勇,易艳春.2011.外商直接投资与中国碳排放[J].中国人口·资源与环境,21(1):49-52. [334]涂正革,谌仁俊.2015.排污权交易机制在中国能否实现波特效应?[J].经济研究,(7):160-173. [335]王少剑,黄永源,周钰荃.2019.中国城市碳排放强度的空间溢出效应及驱动因素探究(英文)[J]. Journal of Geographical Sciences,29 (2):73-94. [336]王为东,卢娜,张财经.2018.空间溢出效应视角下低碳技术创新对气候变化的响应[J].中国人口·资源与环境,28 (8):25-33. [337]向堃,宋德勇.2015.中国省域pm2.5污染的空间实证研究[J].中国人口·资源与环境,(9):153-159. [338]杨连星,罗玉辉.2017.中国对外直接投资与全球价值链升级[J].数量经济技术经济研究,(6):54-70. [339]杨万平,袁晓玲.2008.对外贸易、FDI对环境污染的影响分析——基于中国时间序列的脉冲响应函数分析:1982-2006[J].世界经济研究,(12):62-68. [340]姚奕,倪勤.2013.外商直接投资对碳强度的影响——基于中国省级动态面板数据的实证研究[J].数理统计与管理,(1):113-122. [341]尹东东,张建清.2016.我国对外直接投资逆向技术溢出效应研究——基于吸收能力视角的实证分析[J].国际贸易问题,(1):109-120. [342]张成.2011.内资和外资:谁更有利于环境保护——来自我国工业部门面板数据的经验分析[J].国际贸易问题,(2):98-106. [343]郑佳佳,喻晓蕾.2015.FDI的引进加剧了我国的碳排放吗?——基于市场化角度的再分析[J].中国管理科学,(S1):778-785. [344]周力,庞辰晨.2013.中国对外直接投资的母国环境效应研究——基于区域差异的视角[J].中国人口·资源与环境,23(8):131-139. [345]周杰琦,汪同三.2017.FDI、要素市场扭曲与碳排放绩效——理论与来自中国的证据[J].国际贸易问题,(7):96-107. [346]Bitzer,Jürgen,Holger Görg. 2009. Foreign Direct Investment,Competition and Industry Performance[J]. The World Economy,32 (2):221-233. [347]Braunerhjelm,P.,R.Svensson. 1996. Host Country Characteristics and Agglomeration in Foreign Direct Investment[J]. Applied Economics,28 (7):833-840. [348]Eskeland,G.S.,A.E.Harrison. 2003. Moving to Greener Pastures?—Multinationals and the Pollution Haven Hypothesis[J]. Journal of Development Economics,70 (1):1-23. [349]Fosfuri,A.,M.Motta. 1999. Multinationals without Advantages[J]. Scandinavian Journal of Economics,101 (4):617-630. [350]Grossman,G.M.,A.B.Krueger. 1991. Environmental Impacts of a North American Free Trade Agreement[R]. NBER Working Papers,No.W3914. [351]Guo,L.L.,Y.Qu,M.L.Tseng. 2017. The Interaction Effects of Environmental Regulation and Technological Innovation on Regional Green Growth Performance[J]. Journal of Cleaner Production,162:894-902 [352]Herzer,Dierk. 2011. The Long-run Relationship between Outward Foreign Direct Investment and Total Factor Productivity:Evidence for Developing Countries[J]. Journal of Development Studies,47 (5):767-785. [353]Jorgenson,A.K. 2007. Does Foreign Investment Harm the Air We Breathe and the Water We Drink?—A Cross-national Study of Carbon Dioxide Emissions and Organic Water Pollution in Less-developed Countries[J]. Organization Environment,20 (2):137-156. [354]Kirkpatrick,C.,K.Shimamoto. 2008. The Effect of Environmental Regulation on the Location Choice of Japanese Foreign Direct Investment[J]. Applied Economics,40 (11):1399-1409. [355]Kogut,B.,S.J.Chang. 1991. Technological Capabilities and Japanese Foreign Direct Investment in the United States[J]. The Review of Economics and Statistics,73 (3):401-413. [356]Myles,S. 2013. Does FDI Promote Mena Region’s Environment Quality?—Pollution Halo or Pollution Haven Hypothesis[J]. International Journal,1 (6):92-100. [357]Neven,D.,G.Siotis. 1996. Technology Sourcing and FDI in the EC:An Empirical Evaluation[J]. International Journal of Industrial Organization,14 (5):543-560. [358]Sinn,H. 2008. Public Policies against Global Warming:A Supply Side Approach[J]. International Tax and Public Finance,(15):360-394. [359]Siotis,G. 1999. Foreign Direct Investment Strategies and Firms’ Capabilities[J]. Journal of Economics Management Strategy,8 (2):251-270. [360]Teece,D.J. 1992. Foreign Investment and Technological Development in Silicon Valley[J]. California Management Review,34 (2):88-106. [361]Yamawaki,H. 1993. Technological Advantage,International Competitiveness and Entry of Multinational Firms[J]. Rivista Internazionale Di Scienze Sociali,101 (3):267-273. [362]Zhou,Yu,J.Jiang,B.Ye,B.Hou. 2019. Green Spillovers of Outward Foreign Direct Investment on Home Countries:Evidence from China’s Province-level Data[J]. Journal of Cleaner Production,215:829-844. [363]陈信元,张田余,陈冬华.2001.预期股票收益的横截面多因素分析:来自中国证券市场的经验证据[J].金融研究,(6):22-35. [364]方毅,孟佶贤,曲俊雪.2019.基于市场异象的多因子定价模型比较研究[J].数量经济研究,10 (1):82-96. [365]王茵田,朱英姿.2011.中国股票市场风险溢价研究[J].金融研究,(7):152-166. [366]徐德财,初梓健,周津宇.2019.由实证检验到理论猜想:证券价格与价值偏离的时变路径及其生成机理[J].数量经济研究,(3):74-99. [367]张矢的,高明宇,吴斌.2014.未充分分散投资下的资本资产定价模型:基于中国A股市场的实证检验[J].管理评论,26 (10):24-37. [368]Barberis,N.,R.Greenwood,L.Jin,,A.Shleifer. 2018. Extrapolation and Bubbles[J]. Journal of Financial Economics,129 (2):203-227. [369]Benjamini,Y.,Y.Hochberg. 1995. Controlling the False Discovery Rate:A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society:Series B,57:289-300. [370]Bonferroni,C.E. 1936. Teoria Statistica Delle Classi e Calcolo Delle Probabilità[J]. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,8:3-62 [371]Campbell,J.Y.,M.Lettau,B.G.Malkiel,Y.Xu. 2001. Have Individual Stocks Become More Volatile?—An Empirical Exploration of Idiosyncratic Risk[J]. Journal of Finance,56 (1):1-43. [372]Dunn,O.J. 1959. Estimation of the Medians for Dependent Variables[J]. Annals of Mathematical Statistics,30 (1):192-197. [373]Estrada,J.,A.P.Serra. 2005. Risk and Return in Emerging Markets:Family Matters[J]. Journal of Multinational Financial Management,15 (3):257-272. [374]Fama,E.F.,K.R.French. 1992. The Cross-section of Expected Stock Returns[J]. The Journal of Finance,47 (2):427-465. [375]Fama,E.F.,K.R.French. 1993. Common Risk Factors in the Returns on Stocks and Bonds[J]. Journal of Financial Economics,33 (1):3-56. [376]Goetzmann,W.N. 2016. Bubble Investing:Learning from History[R]. NBER Working Papers,3:149-168. [377]Hong,H.,J.C.Stein. 2007. Disagreement and the Stock Market[J]. Journal of Economic Perspectives,21 (2):109-128. [378]Huang,J.,J.Wang. 2009. Liquidity and Market Crashes[J]. Review of Financial Studies,22 (7):2607-2643. [379]Jegadeesh,N.,S.Titman. 1993. Returns to Buying Winners and Selling Losers:Implications for Stock Market Efficiency[J]. Journal of Finance,48 (1):65-91. [380]Mackay,C. 1841. Extraordinary Popular Delusions and the Madness Of Crowds[M]. Farrar,Straus and Giroux. [381]Ofek,E.,M.Richardson. 2003. Dotcom Mania:The Rise and Fall of Internet Stock Prices[J]. Journal of Finance,58 (3):1113-1137. [382]Shiller,R. 2000. Irrational Exuberance[M]. Princeton University Press. [383]陈磊,高铁梅.1994.利用Stock-Watson型景气指数对宏观经济形势的分析和预测[J].数量经济技术经济研究,(5):53-59. [384]郭国峰,郑召锋.2010.中国宏观经济先行指数和一致指数应用效果检验与改进[J].数量经济技术经济研究,27 (10):131-144. [385]刘金全,刘志刚.2005.我国经济周期波动中实际产出波动性的动态模式与成因分析[J].经济研究,(3):26-35. [386]刘金全,王大勇.2003.经济增长的阶段性假说和波动性溢出效应检验[J].财经研究,(5):3-7. [387]王金明,程建华,杨晓光.2007.SW型先行景气指数建设的实证研究[J].中国管理科学,(4):116-123. [388]郑挺国,王霞.2013.中国经济周期的混频数据测度及实时分析[J].经济研究,48 (6):58-70. [389]Blanchard,Olivier,John Simon. 2001. The Long and Large Decline in U.S.Output Volatility[J]. Brookings Papers on Economic Activity,32 (1):135-174. [390]Carriero,John. 2005. Spinoza on Final Causality[J]. Oxford Studies in Early Modern Philosophy,(2):105-147. [391]Friedman,Milton. 1993. The “Plucking Model” of Business Fluctuations Revisited[J]. Economic Inquiry,31 (2):171-177. [392]Girardin,Eric. 2005. Growth-cycle Features of East Asian Countries:Are They Similar?[J]. International Journal of Finance & Economics,(10):143-156. [393]Hamilton,James D. 1989. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle[J]. Econometrica,57 (2):357-384. [394]Mitchell,Wesley Clair,Arthur F.Burns. 1938. Statistical Indicators of Cyclical Revivals[J]. Business Cycle Indicators,(1):162-183. [395]Sichel,Daniel E. 1994. Inventories and the Three Phases of the Business Cycle[J]. Journal of Business & Economic Statistics,(12):269-277. [396]Sims,Christopher A. 1992. Interpreting the Macroeconomic Time Series Facts:The Effects of Monetary Policy[J]. European Economic Review,36 (5):975-1000. [397]Stock,James,Mark Watson. 1989. New Indexes of Coincident and Leading Economic Indicators[J]. NBER Macroeconomics Annual,(4):351-394. [398]丁绪辉,贺菊花,王柳元.2018.考虑非合意产出的省际水资源利用效率及驱动因素研究——基于SE-SBM与Tobit模型的考察[J].中国人口·资源与环境,28 (1):157-161. [399]董战峰,喻恩源,裘浪,等.2012.基于DEA模型的中国省级区域水资源效率评价[J].生态经济,(10):43-47. [400]廖虎昌,董毅明.2011.基于DEA和Malmquist指数的西部12省水资源利用效率研究[J].资源科学,33 (2):273-279. [401]马海良,丁元卿,王蕾.2017.绿色水资源利用效率的测度和收敛性分析[J].自然资源学报,32 (3):406-417. [402]马海良,黄德春,张继国.2012.考虑非合意产出的水资源利用效率及影响因素研究[J].中国人口·资源与环境,22 (10):35-42. [403]买亚宗,孙福丽,石磊,等.2014.基于DEA的中国工业水资源利用效率评价研究[J].干旱区资源与环境,28 (11):42-47. [404]钱文婧,贺灿飞.2011.中国水资源利用效率区域差异及影响因素研究[J].中国人口·资源与环境,21 (2):54-60. [405]孙爱军,方先明.2010.中国省际水资源利用效率的空间分布格局及决定因素[J].中国人口·资源与环境,20 (5):139-145. [406]孙才志,姜坤,赵良仕.2017.中国水资源绿色效率测度及空间格局研究[J].自然资源学报,32 (12):1999-2011. [407]孙才志,马奇飞,赵良仕.2018.中国东、中、西三大区域水资源绿色效率时空演变特征与收敛性分析[J].地理科学进展,37 (7):901-911. [408]田萍,汪制邦.2019.我国第三产业全要素生产率区域差异及影响因素研究[J].数量经济研究,10 (3):100-120. [409]汪克亮,刘悦,史利娟,等.2017.长江经济带工业绿色水资源效率的时空分异与影响因素——基于EBM-Tobit模型的两阶段分析[J].资源科学,39 (8):1522-1534. [410]王昕,陆迁.2014.中国农业水资源利用效率区域差异及趋同性检验实证分析[J].软科学,28 (11):133-137. [411]杨骞,刘华军.2015.污染排放约束下中国农业水资源效率的区域差异与影响因素[J].数量经济技术经济研究,(1):114-128. [412]余泳泽.2017.异质性视角下中国省际全要素生产率再估算:1978-2012[J].经济学(季刊),16 (3):1051-1072. [413]张玮,刘宇.2018.长江经济带绿色水资源利用效率评价——基于EBM模型[J].华东经济管理,32 (3):67-73. [414]赵晨,王远,谷学明,等.2013.基于数据包络分析的江苏省水资源利用效率[J].生态学报,33 (5):1636-1644. [415]赵良仕,孙才志,郑德凤.2014.中国省际水资源利用效率与空间溢出效应测度[J].地理学报,69 (1):121-133. [416]Andersen,P.,N.C.Petersen. 1993. A Procedure for Ranking Efficient Units in Data Envelopment Analysis[J]. Management Science,39 (10):1261-1264. [417]Tone,K.,M.Tsutsui. 2010. An Epsilon-based Measure of Efficiency in DEA:A Third Pole of Technical Efficiency[J]. European Journal of Operational Research,207:1554-1563. [418]蔡伟宏,李惠娟.2017.中、日、韩服务贸易的东亚分工地位比较——基于增加值贸易的视角[J].经济经纬,34 (5):75-80. [419]岑丽君.2015.中国在全球生产网络中的分工与贸易地位——基于TiVA数据与GVC指数的研究[J].国际贸易问题,(1):3-13+131. [420]刘琳.2015.中国参与全球价值链的测度与分析——基于附加值贸易的考察[J].世界经济研究,(6):71-83+128. [421]孙浦阳,韩帅,许启钦.2013.产业集聚对劳动生产率的动态影响[J].世界经济,36 (3):33-53. [422]陶长琪,徐志琴.2019.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,10 (1):16-31. [423]文东伟,冼国明.2010.中国制造业的垂直专业化与出口增长[J].经济学(季刊),9 (2):467-494. [424]闫云凤.2018.中日韩服务业在全球价值链中的竞争力比较[J].现代日本经济,(1):48-59. [425]杨仁发.2013.产业集聚与地区工资差距——基于我国269个城市的实证研究[J].管理世界,29 (8):41-52. [426]尹伟华.2016.中日制造业参与全球价值链分工模式及地位分析——基于世界投入产出表[J].经济理论与经济管理,(5):100-112. [427]尹伟华.2018.全球价值链视角下中美农业双边贸易分解分析[J].世界经济研究,(6):3-11+135. [428]张龙,韩岳峰,张鑫.2015.中日分类服务贸易竞争力分解研究[J].世界经济研究,(5):52-59+128. [429]郑国姣,杨来科.2015.增加值贸易视角下的中日服务贸易再考察[J].经济问题探索,(8):99-105. [430]周升起,兰珍先,付华.2014.中国制造业在全球价值链国际分工地位再考察——基于Koopman等的“GVC地位指数”[J].国际贸易问题,(2):3-12. [431]Hummels,D.,J.Ishii,K.M.Yi. 2001. The Nature and Growth of Vertical Specialization in World Trade[J]. Journal of International Economics,54 (1):75-96. [432]Koopman,R.,W.M.Powers,Z.Wang,S.J.Wei. 2010. Give Credit Where Credit Is Due:Tracing Value Added in Global Production Chains[R]. NBER Working Paper Series,No.16426. [433]Krugman,P.,A.J.Venables. 1995. Globalization and the Inequality of Nations[J]. The Quarterly Journal of Economics,110 (4):857-880. [434]Stehrer,R.,N.Foster,G.de Vries. 2012. Value Added and Factors in Trade:A Comprehensive Approach[R]. WIOD Working Paper,No.7. [435]Subramanian,A.,M.Kessler. 2013. The Hyperglobalization of Trade and Its Future[J]. Social Science Electronic Publishing,27 (2):319-341. [436]Wang,Z.,S.J.Wei,K.Zhu. 2013. Quantifying International Production Sharing at the Bilateral and Sector Levels[R]. NBER Working Paper Series,No.19677.
[展开]

相关推荐

发表评论

同步转发到先晓茶馆

发表评论

手机可扫码阅读