首页 > 图书详情

汽车大数据应用研究报告 经济管理类;中国;工业部门经济学;普通研究报告

售价:¥202.64 ¥298
0人在读 |
0 评分
丛书名:
ISBN:978-7-5201-7073-4

*温馨提示:此类商品为数字类产品,不支持退换货,不支持下载打印

图书简介 目录 参考文献 音频 视频
《汽车大数据应用研究报告:新能源汽车安全篇》是面向新能源汽车全产业链的行业研究报告。基于汽车大数据应用联合研究中心各成员单位的研究成果,本书分别从电池安全、整车安全、充电安全、预警研究、测试评价以及综合应用多个方面,系统地剖析了大数据在新能源汽车安全领域的应用与发展趋势。同时,深入探析了故障车数据、电池数据、充电行为数据等多维度数据,对如何应用汽车大数据提升新能源汽车安全性能提出建议。
[展开]
[1]《BP世界能源统计年鉴》.2019. [2]杨德才. 锂离子电池安全性——原理、设计与测试[M].成都:电子科技大学出版社,2012. [3]Rui Guo. Languang Lu. Minggao Ouyang & Xuning Feng. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports volume,2016. [4]冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 清华大学,2016. [5]高飞,刘皓,吴从荣,等.锂离子电池热安全防控技术的研究进展[J]. 新能源进展,2020,8(01):15-21. [6]Peiyi Sun,Roeland Bisschop,Huichang Niu,Xinyan Huang. A review of battery fires in electric vehicles[J]. Springer US,2020(prepublish). [7]Zheng Y,Ouyang M,Lu L,et al. On-line equalization for lithium-ion battery packs based on charging cell voltages:Part 1.Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources,2014,247(feb.1):676-686. [8]Zhou L,Zheng Y,Ouyang M,et al. A study on parameter variation effects on battery packs for electric vehicles[J]. Journal of Power Sources,2017,364(oct.1):242-252. [9]Lu L,Han X,Li J,et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226(MAR.15):272-288. [10]Wang Y,Chen Z,Zhang C. On-line remaining energy prediction:A case study in embedded battery management system[J]. Applied Energy,2017,194. [11]Feng X,Pan Y,He X,et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage,2018,18(aug.):26-39. [12]Schuster S F,Brand M J,Berg P,et al. Lithium-ion cell-to-cell variation during battery electric vehicle operation[J]. Journal of Power Sources,2015,297(nov.30):242-251. [13]张燕梅. 基于不一致性的三元锂电池组寿命研究[J]. 机电技术,2019,000(001):45-48. [14]王震坡,孙逢春,张承宁. 电动汽车动力蓄电池组不一致性统计分析[J]. 电源技术,2003,27(5):438-441. [15]戴海峰,王楠,魏学哲,等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程,2014,36(2):181-188. [16]单毅. 锂离子电池一致性研究[D]. 中国科学院研究生院(上海微系统与信息技术研究所),2008. [17]李国欣. 新型化学电源技术概论[M]. 上海科学技术出版社,2007. [18]郑岳久. 车用锂离子动力电池组的一致性研究[D]. 清华大学,2014. [19]Feng X,Xu C,He X,et al. A graphical model for evaluating the status of series-connected lithium-ion battery pack[J]. International Journal of Energy Research,2018,43(10):749-766. [20]Ouyang M,Zhang M,Feng X,et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources,2015,294(oct.30):272-283. [21]卢兰光,李建秋,华剑锋,等. 电动汽车锂离子电池管理系统的关键技术[J]. 科技导报,2016,34(06):39-51. [22]Cheng Lin,Aihua Tang,Wenwei Wang. A Review of SOH Estimation Methods in Lithium-ion Batteries for Electric Vehicle Applications[J]. Energy Procedia,2015,75. [23]靳立强,孙志祥,刘志茹,等. 不同温度下锂电池剩余电量估算的仿真研究[J]. 汽车工程,2019,41(05):114-122+130. [24]卢艳华. 车用三元锂离子动力电池内阻特性分析[J]. 电源技术,2017(5). [25]梁奇,于春梅,王顺利,等. 基于PNGV电路模型的航空钴酸锂电池内阻研究[J]. 电源学报,2017,015(002):153-158. [26]王芳,孙智鹏,林春景,等. 能量型磷酸铁锂动力电池直流内阻测试及分析[J]. 重庆理工大学学报:自然科学版,2017,31(08):44-50. [27]Andre D,Appel C,Soczka-Guth T,et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources,2013,224(none):20-27. [28]Haykin,Simon. Kalman filtering and neural networks[M]. John Wiley & Sons,Inc,2001. [29]Malkhandi S. Fuzzy logic-based learning system and estimation of state-of-charge of lead-acid battery[J]. Engineering Applications of Artificial Intelligence,2006,19(5):479-485. [30]Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1.Background[J]. Journal of power sources,2004,134(2):252-261. [31]Xuning F,Caihao W,Xiangming H,et al. Incremental Capacity Analysis on Commercial Lithium-Ion Batteries Using Support Vector Regression:A Parametric Study[J]. Energies,2018,11(9):2323. [32]周頔,宋显华,卢文斌,等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报,2019,39(01):107-113+327. [33]Zhou Y,Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability,2016,65(OCT.):265-273. [34]Barnett B. Technologies for detection and intervention of internal short circuits in Li-ion batteries[C]. 5th Annual Battery Safety,Washington D.C.,USA,2014. [35]Asakura J,Nakashima T,Nakatsuji T,et al. Battery Internal Short-Circuit Detecting Device and Method,Battery Pack,and Electronic Device System:United States,US20100201321A1,2010. [36]Ikeuchi,Akira,et al. Circuit and Method for Determining Internal Short-Circuit,Battery Pack,and Portable Device:United States,US20140184235A1,2014. [37]Asakura J,Nakashima T,Nakatsuji T,et al. Battery Internal Short-Circuit Detection Apparatus and Method,and Battery Pack:United States,US20100188050A1,2010. [38]Sazhin S V,Dufek E J,Gering K L. Enhancing Li-Ion Battery Safety by Early Detection of Nascent Internal Shorts[J]. Journal of The Electrochemical Society,2016. [39]Keates,Andrew W,et al. Short Circuit Detection for Batteries:United States,US7795843B2,2010. [40]Hermann,Weston Arthur,and Scott Ira Kohn. Detection of Over-Current in a Battery Pack:United States,US20140088809A1,2014. [41]Xiangdong K,Yuejiu Z,Minggao O,et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources,2018,395(AUG.15):358-368. [42]Zheng Y,Lu L,Han X,et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation[J]. Journal of Power Sources,2013,226(MAR.15):33-41. [43]王文斌. 汽车企业的大数据分析模型研究与实现[J]. 信息与电脑(理论版),2019(14):149-151. [44]陈云香,孙华平,张茜,刘宏笪. 价值链曲线视角下中国新能源汽车电池产业转型升级策略研究[J]. 经济研究参考,2019(09):46-51. [45]马建,刘晓东,陈轶嵩等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报,2018,31(08):1-19. [46]中华人民共和国工业和信息化部.新能源汽车生产企业及产品准入管理规划[Z]. 2009-6-17. [47]贡俊,张舟云. 车用驱动电机产业发展动态[R]. 北京:中国汽车技术研究中心. 2017. [48]马亚蕾. 浅谈大数据在新能源汽车领域的应用[J]. 计算机产品与流通,2019(11):145. [49]王攀,李龙辉,徐树杰. 中国新能源汽车动力蓄电池回收利用产业发展探究[J]. 时代汽车,2019(21):36-37. [50]工业和信息化部,2017年智能制造试点示范项目要素条件[R].2017. [51]工业互联网产业联盟,工业互联网平台白皮书(2019)[R]. 2019. [52]工业互联网产业联盟,工业互联网成熟度评估白皮书(1.0版)[R]. 2017. [53]德国机械及制造商协会,Industrie 4.0 Readiness[R].2015. [54]德国国家科学与工程学院,Industrie 4.0 Maturity Index[R].2017. [55]中国工业技术软件化产业联盟,工业互联网APP发展白皮书[R].2018. [56]工业互联网产业联盟,工业互联网体系架构(版本2.0)[R].2020. [57]Zhang Xiongwen. Thermal analysis of a cylindricallithium-ion battery[J]. Electrochimica Acta,2011,56(3):1246-1255. [58]Feng X,Ouyang M,Liu X,et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials,2017:246-267. [59]J.B. Goodenough,Energy storage materials:a perspective[J]. Energy Storage Mater,2015:158-161. [60]Wilke S,Schweitzer B,Khateeb S,et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material:An experimental study[J]. Journal of power sources,2017,340(FEB.1):51-59. [61]F.Larsson,P.Andersson,B.Mellander. Lithium-ion battery aspects on fires in electrified vehicles on the basis of experimental abuse tests[J]. Batteries,2016. [62]E. Cabrera-Castillo,F. Niedermeier,A. Jossen. Calculation of the state of safety (SOS) for lithium ion batteries[J]. Journal of Power Sources. 2016:509-520. [63]Guerfi A,Dontigny M,Charest P,et al. Improved electrolytes for Li-ion batteries:Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance[J]. Journal of Power Sources,2010,195(3):845-852. [64]A. Lewandowski,A.S. Mocek. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies[J]. Journal of Power Sources,2009:601-609. [65]Mandal B K,Padhi A K,Shi Z,et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources,2006,162(1):690-695. [66]Vollmer J M,Curtiss L A,Vissers D R,et al. Reduction Mechanisms of Ethylene,Propylene,and Vinylethylene Carbonates[J]. Journal of the Electrochemical Society,2004,151(1):A178-A183. [67]A.M. Haregewoin,A.S. Wotango,B.J. Hwang,Electrolyte additives for lithium ion battery electrodes:progress and perspectives[J]. Energy Environ. Sci,2016,(9):1955. [68]M. Baginska,B.J. Blaiszik,R.J. Merriman,N.R. Sottos,J.S. Moore,S.R. White. Automatic shutdown of lithium-ion batteries using thermoresponsive microspheres[J]. Adv. Energy Mater. 2012,2:583-590. [69]C.J. Orendorff. The role of separators in lithium-ion cell safety[J]. Electrochem. Soc. Interface,2012,21(2):61-65. [70]赵飞. 对锂电池安全问题的风险管理[D]. 上海:华东理工大学,2012. [71]吴凯,张耀,曾毓群,等. 锂离子电池安全性能研究[J]. 化学进展,2011,3(23):401-409. [72]夏兰,李素丽,艾新平,等. 锂离子电池的安全性技术[J]. 化学进展,2011,3(23):328-335. [73]张磊. 锂离子电池安全性影响因素研究[D]. 秦皇岛:燕山大学,2012. [74]胡广侠,解晶莹. 影响锂离子电池安全性的因素[J]. 电化学,2002,8(3):245-250. [75]陈玉红,唐致远,卢星河,等. 锂离子电池爆炸机理研究[J]. 化学进展,2006,6(18):823-831. [76]冯详明,郑金云,李荣富,等. 锂离子电池安全[J]. 电源技术,2009(1):7-9. [77]王青松,孙金华,何理. 锂离子电池安全性特点及热模型研究[J]. 中国安全生产技术,2005,6(1):19-21. [78]王松蕊,付亚娟,卢立丽,等. 锂离子电池温度变化热模拟研究[J]. 电源技术,2010,034(001):41-44,91. [79]赵亚涛,王亚松,徐阳,等. 新能源客车安全监控管理系统[J]. 工程技术(文摘版),2016:00186-00186. [80]曹瑞中,周时国,张益鹰. 一种车载电池箱的灭火系统和一种车载电池箱[P]. CN205569556U,2016-09-14. [81]王江锋,高峰,王建. 一种新型车辆智能避撞预警模型设计[J]. 北京航空航天大学学报,2007(11):1325-1328. [82]孙明英,司俊德,李建平,崔崇祯,申非涛. 一种驾驶员安全结构及使用该结构的车辆[P]. CN206255089U,2017-06-16. [83]GB/T 31498-2015,电动汽车碰撞后安全要求[S]. [84]佘承其,张照生,刘鹏,孙逢春. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. DOI:10.3901/JME.2019.20.003. [85]GB/T 18344-2016,汽车维护、检测、诊断技术规范[S]. [86]赵福全,刘宗巍,郝瀚,史天泽. 汽车产业变革的特征、趋势与机遇[J]. 汽车安全与节能学报,2018,9(3):233-249. [87]张本宏,王新. 基于B/S架构的汽车远程诊断系统[J]. 合肥工业大学学报(自然科学版),2018,41(5):577-581. [88]胡瑶. 基于CAN/GPRS技术的电动汽车远程监控系统研究[D]. 武汉:武汉理工大学,2012. [89]吕群芳,王亚晶. 车载智能终端与车联网信息平台的设计开发[J]. 数字技术与应用,2019,37(10):167-171. [90]马逸然,王蔚. 基于车载终端的电动汽车运营监控系统设计[J]. 山东电力技术,2018,45:16-21. [91]苏涛. 电动汽车车载终端系统设计[J]. 自动化与仪表,2018,33(5):88-105. [92]刘顺平,潘圣临,胡志刚,于荣枫,张世伟. 大数据平台下的新能源汽车动力系统选型参考[J].新能源汽车,2019,10:27-35. [93]张瑜,车晓波,王勇,于良杰. 新能源车辆远程监控系统优化设计[J]. 现代电子技术,2019,42(3):96-100. [94]杨小娟,阳冬波,贾红,巩建强. 新能源汽车可靠性大数据分析技术研究[J]. 公路交通科技,2017,34:123-127. [95]谷晓会,章国安. 移动边缘计算在车载网中的应用综述[J/OL]. 计算机应用研究.https://doi.org/10.19734/j.issn.1001-3695.2019.01.0001. [96]李然,武俊峰,王海英. 电动公交客车CAN总线网络通信结构的设计[J]. 哈尔滨理工大学学报,2012,17(1):69-73. [97]Ling L,Chao S,Yong-Bo X,et al. A research on cell inconsistency prediction of power battery using Gaussian process regression[C]//The Second International Conference on Image,Video Processing and Artificial Intelligence. 2019. [98]梅宏. 大数据:发展现状与未来趋势[N]. 中国信息化周报,2020(007). [99]张莉曼,张向先,吴雅威,等. 基于小数据的社交类学术App用户动态画像模型构建研究[J]. 图书情报工作,2020(5):50-59. [100]康军,温兴超,段宗涛,唐蕾. 基于大规模GPS轨迹数据的出租车换道行为研究[J]. 计算机系统应用,2018(12):251-256. [101]佘承其,张照生,刘鹏,孙逢春. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报,2019(20):3-16. [102]张坤,魏东坡,尹文荣,何运丽,韩馥灿. 基于大数据的纯电动汽车系统故障规律研究[J]. 济宁学院学报,2019(05):12-16. [103]杨波. 用大数据定位目标客群[N]. 中国城乡金融报,2019(A06). [104]侯庆坤. 大数据在汽车行业的运用及影响分析[J]. 现代商业,2019(03):42-43. [105]付建秋,宋建懿,朱永辉. 汽车制造企业质量中台研究[J]. 科技创新与应用,2020(03):59-60. [106]刘木林,卜凡涛,林辉,孙洋. 电动汽车动力电池热失控过程分析及预警机制设计[J]. 汽车实用技术,2020(05):15-17. [107]董学锋. 基于大数据的乘用车油耗与续驶里程研究[J]. 汽车文摘,2020(04):1-. [108]GBT 32960.1-2016.电动汽车远程服务与管理系统技术规范[S]. [109]GB/T 18384.3-2015.电动汽车 安全要求[S]. [110]GB/T 27930-2015.电动汽车非车载传导式充电机与电池管理系统之间的通信协议[S]. 2015. [111]中汽协,中国汽车动力电池产业创新联盟.《电动汽车安全指南》,[EB/OL]. [112]何志静,刘卯. 电动汽车充电安全分析与解决方案研究[J].山东工业技术,2017(13). [113]孙晓菲. 电动汽车规模化发展对电网企业运营的影响研究[D]. 华北电力大学,2013. [114]刘洪序. 中国新能源汽车出口研究[D].天津商业大学,2019. [115]落文斌. 双级式光伏并网发电系统的研究与应用[D]. 东北石油大学,2018. [116]李景涛. 基于供电可靠性的石家庄分区配电网规划经济性研究[D]. 华北电力大学,2018. [117]张纯永. 基于规模化电动汽车充电的谐波问题研究[D]. 华中科技大学,2014. [118]黄梅,黄少芳. 电动汽车充电站谐波的工程计算方法[J]. 电网技术,2008(20):20-23. [119]韩锦瑞. 广东电网公司应对电动汽车发展的规划建设策略研究[D]. 华北电力大学,2013. [120]李士书. 基于排队论的电动汽车电池消耗量建模与仿真[D]. 北京交通大学,2013. [121]李仕鹏. 基于排队论的汽车共享优化设计[D]. 杭州电子科技大学,2013. [122]孙朝阳. 两阶段随机排队论应用于区域电力能源系统规划[D]. 华北电力大学(北京),2016. [123]Zhu J,Wang Z,Zhang L,et al. State and parameter estimation based on a modified particle filter for an in-wheel-motor-drive electric vehicle[J]. Mechanism & Machine Theory,2019,133:606-624. [124]Zhang J,Zhang L,Sun F,et al. an overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access,2018,6,23848-23863. [125]Wang Z,Ma J,Zhang L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression[J]. IEEE Access,2017,5:21286-21295. [126]Xiong R,Cao J.Y.,Yu Q.Q.,et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access 2017,6:1832-1843. [127]Feng X,Ouyang M,Liu X,et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review. Energy Storage Mater. 2018,10:246-267. [128]Li D,Zhang Z,Liu P,et al. DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles[J]. Energies,2019,12. [129]Koch S,Fill A,Birke K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources,2018,398(SEP.15):106-112. [130]Sara A,Martin P,Amandine L,et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources,2018,399:264-273. [131]Lu L,Han X,Li J,et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226(MAR.15):272-288. [132]Xiong R,Yu Q Q,Wang L Y,Lin C. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy,2017,207:341-348. [133]Xiong R,Tian J P,Mu H,Wang C. A systematic model-based degradation behavior recognition and health monitor method of lithium-ion batteries[J]. Applied Energy,2017,207:367-378. [134]Xiong R,Cao J,Yu Q. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy,2018,211(FEB.1):538-548. [135]Sun Y,Jou H,Wu J. Diagnosis method for the degradation of lead-acid battery[J]. In Proceedings of the IEEE International Symposium on Industrial Electronics,Seoul,Korea,5-8 July 2009,pp. 1397-1402. [136]Liu Z,He H. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy,2017,185:2033-2044. [137]Chen Z,Xiong R,Tian J,et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy,2016,184:365-374. [138]Kim I.-S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Trans. Power Electron. 2010,25:1013-1022. [139]Kim G H,Smith K,Ireland J,Pesaran A. Fail-safe design for large capacity lithium-ion battery systems. J. Power Sources 2012,210:243-253. [140]Chen W,Chen W T,Saif M,et al. Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of luenberger and learning observers[J]. IEEE Transactions on Control Systems Technology,2014,22(1):290-298. [141]Hwang J C,Chen J C,Pan J S,Huang Y C. Measurement method for online battery early faults precaution in uninterrupted power supply system[J]. IET Electr. Power Appl. 2011,5:267-274. [142]Chen C,Xiong R,Shen W. A Lithium-Ion Battery-in-the-Loop Approach to Test and Validate Multiscale Dual H Infinity Filters for State-of-Charge and Capacity Estimation[J]. IEEE Transactions on Power Electronics,2017,33(1):332-342. [143]He H,Xiong R,Peng J. Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS COS-II platform[J]. Applied Energy,2015,162,1410-1418. [144]Panchal S,McGrory J,Kong J,et al. Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions[J]. Int. J. Energy Res. 2017,41:2565-2575. [145]Yang H,Hassan S G,Wang L,et al. Fault diagnosis method for water quality monitoring and control equipment in aquaculture based on multiple SVM combined with D-S evidence theory[J]. Computers and Electronics in Agriculture,2017,141:96-108. [146]Liu X. Research and Application of Intelligent Battery Fault Diagnosis System[J]. Master’s Thesis,Beijing University of Posts and Telecommunications,Beijing,China,2010. [147]He S,Xiao L,Wang Y,et al. A novel fault diagnosis method based on optimal relevance vector machine[J]. Neurocomputing,2017,267,651-663. [148]You G W,Park S,Oh D. Real-time state-of-health estimation for electric vehicle batteries:A data-driven approach[J]. Applied Energy,2016,176,92-103. [149]Sun Y,Jou H,Wu J. Auxiliary diagnosis method for lead-acid battery health based on sample entropy. Energy Convers[J]. Energy Conversion and Management,2009,50,2250-2256. [150]Widodo A,Shim M C,Caesarendra W,et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications An International Journal,2011,38(9):11763-11769. [151]Yu H S,Hurng L J,Jinn C W. Novel auxiliary diagnosis method for state-of-health of lead-acid battery[C]//International Conference on Power Electronics & Drive Systems. IEEE,2007. [152]JI B,SONG X G,CAO W P,et al. Active temperature control of Li-ion batteries in electric vehicles[C]//Hybrid & Electric Vehicles Conference. IET,2013. [153]ANGELES CABAÑERO M,ALTMANN J,GOLD L,et al. Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries[J]. Energy,2019,171:1217-1228. [154]JIANG J,GAO Y,ZHANG C,et al. Lifetime Rapid Evaluation Method for Lithium-Ion Battery with Li(NiMnCo)O2 Cathode[J]. Journal of The Electrochemical Society,2019,166(6):A1070-A1081. [155]THOMAS E V,BLOOM I,CHRISTOPHERSEN J P,et al. Rate-based degradation modeling of lithium-ion cells[J]. Journal of Power Sources,2012,206:378-382. [156]BIRKL C R,ROBERTS M R,MCTURK E,et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources,2017,341:373-386. [157]LI Y,LIU K,FOLEY A M,et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable and Sustainable Energy Reviews,2019,113:109254. [158]ITURRONDOBEITIA A,AGUESSE F,GENIES S,et al. Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application[J]. The Journal of Physical Chemistry C,2017,121(40):21865-21876. [159]RAHE C,KELLY S T,RAD M N,et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources,2019,433. [160]RAUHALA T,JALKANEN K,ROMANN T,et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile-A post-mortem study[J]. Journal of Energy Storage,2018,20:344-356. [161]王天鸶. 锂离子电池容量损失预测及健康状态估计研究[D]. 哈尔滨工业大学,2016. [162]DOYLE M. Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells[J]. Journal of The Electrochemical Society,1996,143(6):1890. [163]LI J,ADEWUYI K,LOTFI N,et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy,2018,212:1178-1190. [164]RAHIMIAN S K,RAYMAN S,WHITE R E. Comparison of single particle and equivalent circuit analog models for a lithium-ion cell[J]. Journal of Power Sources,2011,196(20):8450-8462. [165]SUBRAMANIAN V R,BOOVARAGAVAN V,RAMADESIGAN V,et al. Mathematical Model Reformulation for Lithium-Ion Battery Simulations:Galvanostatic Boundary Conditions[J]. Journal of The Electrochemical Society,2009,156(4):A260-A271. [166]姜久春,马泽宇,李雪,等. 基于开路电压特性的动力电池健康状态诊断与估计[J]. 北京交通大学学报,2016,40(04):92-98. [167]DUBARRY M,TRUCHOT C,LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources,2012,219:204-216. [168]ANSEÁN D,DUBARRY M,DEVIE A,et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources,2017,356:36-46. [169]ALAVI S M M,SAMADI M F,SAIF M. Plating Mechanism Detection in Lithium-ion batteries,by using a particle-filtering based estimation technique[C]. American Control Conference. IEEE,2013. [170]FENG X,WENG C,OUYANG M,et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy,2016,161:168-180. [171]SEO M,GOH T,PARK M,et al. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method[J]. Energies,2017,10(1):76. [172]ZHANG H,PEI L,SUN J,et al. Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group[J]. Energies,2016,9(5):387. [173]XIA B,SHANG Y,NGUYEN T,et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources,2017,337:1-10. [174]KONG X,ZHENG Y,OUYANG M,et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources,2018,395:358-368. [175]NAHA A,KHANDELWAL A,HARIHARAN K S,et al. On-Board Short-Circuit Detection of Li-ion Batteries Undergoing Fixed Charging Profile as in Smartphone Applications[J]. IEEE Transactions on Industrial Electronics,2019,66(11):8782-8791. [176]WANG Z,HONG J,LIU P,et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy,2017,196:289-302. [177]HONG J,WANG Z,YAO Y. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy,2019,251:113381. [178]GAO Y,JIANG J,ZHANG C,et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of Power Sources,2018,400:641-651. [179]Waldmann T,Wilka M,Kasper M,et al. Temperature dependent ageing mechanisms in Lithium-ion batteries-A Post-Mortem study[J]. Journal of Power Sources. 2014,262:129-135. [180]Feng X,Fang M,He X,et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources. 2014,255. [181]吴正国,张剑波,李哲,等. 锂离子电池加速老化温度应力的滥用边界[J]. 汽车安全与节能学报. 2018,9(01):99-109. [182]Petzl M,Kasper M,Danzer M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources. 2015,275:799-807. [183]Zhang Y,Ge H,Huang J,et al. A comparative degradation study of commercial lithium-ion cells under low-temperature cycling[J]. RSC Advances. 2017. [184]Dubarry M,Truchot C,Liaw B Y,et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources. 2011,196(23):10336-10343. [185]Cheng J,Li X,Wang Z,et al. Mechanism for capacity fading of 18650 cylindrical lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China. 2017,27(7):1602-1607. [186]Wang J,Liu P,Hicks-Garner J,et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources. 2011,196(8):3942-3948. [187]Klett M,Eriksson R,Groot J,et al. Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis[J]. Journal of Power Sources. 2014,257:126-137. [188]Lei Y,Zhang C,Gao Y,et al. Charging optimization of lithium-ion batteries based on capacity degradation speed and energy loss[J]. Energy Procedia. 2018,152:544-549. [189]Dung L,Yuan H,Yen J,et al. A lithium-ion battery simulator based on a diffusion and switching overpotential hybrid model for dynamic discharging behavior and runtime predictions[J]. Energies. 2016,9(1):51. [190]Xiong R,Shen W. Advanced battery management technologies for electric vehicles[M]. Wiley,2019. [191]He H,Xiong R,Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies. 2011,4(4):582-598. [192]雷肖,陈清泉,刘开培,等. 电动车蓄电池荷电状态估计的神经网络方法[J]. 电工技术学报. 2007(08):155-160. [193]Kang L,Zhao X,Ma J. A new neural network model for the state-of-charge estimation in the battery degradation process[J]. Applied Energy. 2014,121:20-27. [194]Chemali E,Kollmeyer P J,Preindl M,et al. State-of-charge estimation of Li-ion batteries using deep neural networks:A machine learning approach[J]. Journal of Power Sources. 2018,400:242-255. [195]Wang J,Chen Q,Cao B. Support vector machine based battery model for electric vehicles[J]. Energy Conversion and Management. 2006,47(7):858-864. [196]Klass V,Behm M,Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation[J]. Journal of Power Sources. 2014,270:262-272. [197]熊瑞,何洪文,许永莉,等. 电动汽车用动力电池组建模和参数辨识方法[J]. 吉林大学学报(工学版). 2012,42(04):809-815. [198]康鑫,时玮,陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术. 2020:1-16. [199]Doyle M. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell[J]. Journal of The Electrochemical Society. 1993,140(6):1526. [200]Ning G,Popov B N. Cycle life modeling of lithium-ion batteries[J]. Journal of The Electrochemical Society. 2004,151(10):A1584. [201]Farkhondeh M,Safari M,Pritzker M,et al. Full-range simulation of a commercial LiFePO4 electrode accounting for bulk and surface effects:a comparative analysis[J]. Journal of The Electrochemical Society. 2014,161:A201-A212. [202]庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法[J]. 物理学报. 2017,66(23):312-322. [203]Bernardi D. A general energy balance for battery systems[J]. Journal of The Electrochemical Society. 1985,132(1):5. [204]Zhao K,Pharr M,Vlassak J,et al. Fracture of electrodes in lithium-ion batteries caused by fast charging[J]. Journal of Applied Physics. 2010,108:73517. [205]Lim C,Yan B,Yin L,et al. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT[J]. Electrochimica Acta. 2012,75:279-287. [206]Cheng Y,Verbruggeb M W. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation[J]. Jounal of Power Sources. 2009,190:453-460. [207]徐兴,王位,陈龙. 基于GA的车用锂离子电池电化学模型参数辨识[J]. 汽车工程. 2017,39(07):813-821. [208]Pang H,Mou L,Guo L,et al. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries[J]. Electrochimica Acta. 2019,307:474-487. [209]Li Y,Chattopadhyay P,Ray A. Dynamic data-driven identification of battery state-of-charge via symbolic analysis of input-output pairs[J]. Applied Energy. 2015,155:778-790. [210]Li Y,Chen J,Lan F. Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares[J]. Journal of Power Sources. 2020,456:227984. [211]Guan W,Dong L L,Zhou J M,et al. Data-driven methods for operational modal parameters identification:A comparison and application[J]. Measurement. 2019,132:238-251. [212]Xiong R,Sun F,Chen Z,et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles[J]. Applied Energy. 2014,113:463-476. [213]Li Y,Chattopadhyay P,Ray A,et al. Identification of the battery state-of-health parameter from input-output pairs of time series data[J]. Journal of Power Sources. 2015,285:235-246. [214]Cadini F,Sbarufatti C,Cancelliere F,et al. State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters[J]. Applied Energy. 2019,235:661-672. [215]Ren D,Hsu H,Li R,et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation. 2019,2:100034. [216]Liu J,Duan Q,Ma M,et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources. 2020,445:227263. [217]Li H,Kong X,Liu C,et al. Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery[J]. Applied Thermal Engineering. 2019,161:114144. [218]Yang C,Wang X,Fang Q,et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[J]. Journal of Energy Storage. 2020,29:101250. [219]Zheng Y,Gao W,Ouyang M,et al. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J]. Journal of Power Sources. 2018,383:50-58. [220]Hu X,Xu L,Lin X,et al. Battery Lifetime Prognostics[J]. Joule. 2020,4(2):310-346. [221]Han X,Lu L,Zheng Y,et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation. 2019,1:100005. [222]姜久春,高洋,张彩萍,等. 电动汽车锂离子动力电池健康状态在线诊断方法木[J]. 机械工程学报. 2019,55(20):60-72. [223]Wang J,Liu P,Hicks-Garner J,et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources. 2011,196(8):3942-3948. [224]Petit M,Prada E,Sauvant-Moynot V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime[J]. Applied Energy. 2016,172:398-407. [225]de Hoog J,Timmermans J,Ioan-Stroe D,et al. Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation[J]. Applied Energy. 2017,200:47-61. [226]马彦,陈阳,张帆,等. 基于扩展H_∞粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报. 2019,55(20):36-43. [227]张雅琨,苏来锁,王彩娟,等. 多应力作用下锂离子电池老化模型[J]. 电源技术. 2018,42(01):32-36. [228]Roscher M A,Assfalg J,Bohlen O S. Detection of utilizable capacity deterioration in battery systems[J]. IEEE Transactions on Vehicular Technology. 2011,60(1):98-103. [229]Wassiliadis N,Adermann J,Frericks A,et al. Revisiting the dual extended kalman filter for battery state-of-charge and state-of-health estimation:A use-case life cycle analysis[J]. Journal of Energy Storage. 2018,19:73-87. [230]杨世春,顾启蒙,华旸,等. 锂离子电池SOC及容量的多尺度联合估计[J]. 北京航空航天大学学报. 2019. [231]林娅,陈则王. 锂离子电池剩余寿命预测研究综述[J]. 电子测量技术. 2018,41(4):29-35. [232]杨杰,王婷,杜春雨,等. 锂离子电池模型研究综述[J]. 储能科学与技术. 2019,8(01):58-64. [233]Li J,Adewuyi K,Lotfi N,et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy. 2018,212:1178-1190. [234]Yang S,Hua Y,Qiao D,et al. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries[J]. Electrochimica Acta. 2019,326:134928. [235]Richardson R R,Osborne M A,Howey D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources. 2017,357:209-219. [236]来鑫,秦超,郑岳久,等. 基于恒流充电曲线电压特征点的锂离子电池自适应容量估计方法[J]. 汽车工程. 2019,41(01):1-6. [237]Ouyang M,Feng X,Han X,et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy. 2016,165:48-59. [238]陈泽宇,熊瑞,孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报. 2019,55(24):93-104. [239]Quirama L F,Giraldo M,Huertas J I,et al. Driving cycles that reproduce driving patterns,energy consumptions and tailpipe emissions[J]. Transportation Research Part D:Transport and Environment. 2020,82:102294. [240]Ma R,He X,Zheng Y,et al. Real-world driving cycles and energy consumption informed by large-sized vehicle trajectory data[J]. Journal of Cleaner Production. 2019,223:564-574. [241]Rechkemmer S K,Zang X,Zhang W,et al. Lifetime optimized charging strategy of Li-ion cells based on daily driving cycle of electric two-wheelers[J]. Applied Energy. 2019,251:113415. [242]GB/T 31485.(2015). 电动汽车用动力蓄电池安全要求及实验方法[S]. [243]GB/T 31467.3.(2015). 电动汽车用锂离子动力蓄电池包和系统[S]. [244]Feng X,Ouyang M,Liu X,et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials,2017:S2405829716303464. [245]Ohsaki T,Kishi T,Kuboki T. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources,2005,146(1/2):97-100. [246]Qi C,Zhu Y L,Gao F,et al. Morphology,structure and thermal stability analysis of cathode and anode material under overcharge[J]. Journal of The Electrochemical Society,2018,165(16):A3985-A3992. [247]Zhu,X.,Wang,Z.,Wang,C. & Huang,L. Overcharge investigation of large format lithium-ion pouch cells with li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles:degradation and failure mechanisms[J]. Journal of The Electrochemical Society,2018,165. [248]Dagger,T. et al. Safety performance of 5 Ah lithium ion battery cells containing the flame retardant electrolyte additive (Phenoxy) pentafluorocyclo triphosphazene[J]. Energy technology,2018. [249]Spotnitz R,Franklin J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources,2003,113(1):81-100. [250]Zaghib K,Simoneau M,Armand M,et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources,1999,81-82:300-305. [251]Teyssot A,Rosso M,Bouchet R,et al. Evolution of the electrode-electrolyte interface in a lithium-polymer battery[J]. Solid State Ionics,2006,177(1-2):141-143. [252]Rosso M,Brissot C,Teyssot A,et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta,2006,51(25):5334-5340. [253]Cui W,He Y B,Tang Z Y,et al. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery[J]. Journal of Solid State Electrochemistry,2012,16(1):265-271. [254]Yao M D,Zhen M,Xiaona S,et al. From the charge conditions and internal short-circuit strategy to analyze and improve the overcharge safety of LiCoO2/graphite batteries[J]. Electrochimica Acta,2018,282:295-303. [255]Wang E,Wu H P,Chiu C H,et al. The effect of battery separator properties on thermal ramp,overcharge and short circuiting of rechargeable li-Ion batteries[J]. Journal of the Electrochemical Society,2019,166(2):A125-A131. [256]Brand,M. et al. In 2013 World electric vehicle symposium and exhibition (EVS27)[C]. 2013:1-9. [257]Lei B X,Zhao W J,Ziebert C,et al. Experimental analysis of thermal runaway in 18650 cylindrical li-Ion cells using an accelerating rate calorimeter[J]. 2017,3(2) [258]Hofmann A,Uhlmann N,Ziebert C,et al. Preventing li-ion cell explosion during thermal runaway with reduced pressure[J]. Applied Thermal Engineering,2017,124:539-544. [259]Huang,P. et al. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition[J]. Applied Thermal Engineering,2018,132:521-530. [260]Ren D,Feng X,Lu L,et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy,2019,250(PT.1):323-332. [261]Ye J,Chen H,Wang Q,et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy,2016,182(nov.15):464-474. [262]Xiaoqing Zhu,Wang Z,Wang Y,et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles:Thermal runaway features and safety management method[J]. Energy,2019,169:868-880. [263]Ouyang D,Chen M,Liu J,et al. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions[J]. RSC Advances,2018,8(58):33414-33424. [264]Kong D,Wen R,Ping P,et al. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in overcharge conditions[J]. International Journal of Energy Research,2019,43:552-567. [265]李坤,王敬,王芳,等. 不同循环周期锂离子动力电池热失控特性分析[J]. 电源技术,2017,41(04):544-547. [266]任东生,冯旭宁,韩雪冰,等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术,2018,7(06):957-966. [267]Roth E P,Doughty D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources,2004,128(2):308-318. [268]Jianbo Z,Laisuo S,Zhe L,et al. The Evolution of Lithium-Ion Cell Thermal Safety with Aging Examined in a Battery Testing Calorimeter[J]. Batteries,2016,2(2):12. [269]Röder,P. et al. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources,2014,268:315-325. [270]Boerner M,Friesen A,Gruetzke M,et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources,2017,342(FEB.28):382-392. [271]Hildebrand,S. et al. Thermal Analysis of LiNi0.4Co0.2Mn0.4O2/Mesocarbon Microbeads Cells and Electrodes:State-of-Charge and State-of-Health Influences on Reaction Kinetics[J]. Journal of the Electrochemical Society,2018,165:A104-A117. [272]Friesen A,Horsthemke F,Monnighoff X,et al. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells:Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis[J]. Journal of Power Sources,2016,334(Dec.1):1-11. [273]Friesen A,Hildebrand S,Horsthemke F,et al. Al2O3 coating on anode surface in lithium ion batteries:Impact on low temperature cycling and safety behavior[J]. Journal of Power Sources,2017,363(sep.30):70-77. [274]Waldmann T,Wohlfahrt-Mehrens M. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells[J]. Electrochimica Acta,2017,230:454-460. [275]Ma,S. et al. Temperature effect and thermal impact in lithium-ion batteries:A review[J]. Progress in Natural Science:Materials International,2018:28,653-666. [276]Guo R,Lu L,Ouyang M,et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries.[J]. Scientific reports,2016,6. [277]Xin Lai,Zheng Y,Zhou L,et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells[J]. Electrochimica Acta,2018,278:245-254. [278]Ouyang,M. et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources,2015,279:626-635. [279]Zhang J,Zhang L,Sun F,et al. An Overview on Thermal Safety Issues of Lithium-ion Batteries for Electric Vehicle Application[J]. IEEE Access,2018,6:23848-23863. [280]Wu,C.,Sun,J.,Zhu,C.,Ge,Y. & Zhao,Y. in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC)[C]. 2015:1-6. [281]罗庆凯,王志荣,刘婧婧,薛云龙. 18650型锂离子电池热失控影响因素[J]. 电源技术,2016,40(02):277-279+376. [282]Fuentevilla D,Hendricks C,Mansour A. Quantifying the Impact of Overdischarge on Large Format Lithium-Ion Cells[J]. ECS Transactions,2015,69(20):1-4. [283]Qi,C.,Zhu,Y.,Gao,F.,Yang,K. & Jiao,Q. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer,2018,124:552-563. [284]Ren,X. et al. The discharge performance of Li2MoO4/LiNO3-KNO3/Li-Mg-B alloy cell as a novel high-temperature lithium battery system[J]. Ionics,2019,25:5353-5360. [285]Panchal S,Dincer I,Agelin-Chaab M,et al. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering,2016,96:190-199. [286]Dong T,Peng P,Jiang F. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer,2018,117(feb.):261-272. [287]Dubarry M,Truchot C,Liaw B Y,et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources,2011,196(23):10336-10343. [288]Kriston,A. et al. External short circuit performance of Graphite-LiNi1/3CO1/3Mn1/3O2 and Graphite-LiNi0.3Co0.15Al0.05O2 cells at different external resistances[J]. Journal of Power Sources,2017,361:170-181. [289]Dong T,Wang Y,Peng P,et al. Electrical-thermal behaviors of a cylindrical graphite-NCA Li-ion battery responding to external short circuit operation[J]. International Journal of Energy Research,2019,43:1444-1459. [290]Chen Z,Xiong R,Lu J,et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied Energy,2018,213(mar.1):375-383. [291]Bing,X.,Zheng,C.,Chris,M. & Brian,R. in 2014 IEEE Transportation Electrification Conference and Expo (ITEC)[C]. 2014:1-7. [292]Dagger,T. et al. Safety Performance of 5 Ah Lithium Ion Battery Cells Containing the Flame Retardant Electrolyte Additive (Phenoxy) Pentafluorocyclotriphosphazene[J]. Energy Technology,2018,6:2001-2010. [293]GB 38031.(2020).电动汽车用动力蓄电池安全要求[S]. [294]Society of Automotive Engineers. Electric and hybrid electric vehicle rechargeable energy storage system (RESS) safety and abuse testing:SAE J2464.(2019). [295]Underwriters Laboratories Inc. Standard for safety lithium battery:UL 1642.(2012). [296]Underwriters Laboratories Inc. Standard for household and commercial batteries:UL 2054.(2011). [297]Underwriters Laboratories Inc. Standard for safety batteries for use in light electric vehicle (LEV) applications:UL 2271.(2013). [298]Underwriters Laboratories Inc. Standard for safety batteries for use in electric vehicle UL 2580.(2013). [299]International Electro technical Commission. Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for portable sealed secondary lithium cells,and for batteries made from them,for use in portable applications-Part 2:Lithium systems:IEC 62133-2.(2017). [300]International Electro technical Commission. Safety of primary and secondary lithium cells and batteries during transport:IEC62281.(2016). [301]National Electrical Manufacturers Association.Standard test method for thermal conductivity of insulating firebrick:NEMA C182M,P12.(2019). [302]Institute of Electrical and Electronics Engineers. IEEE standard for rechargeable batteries for muti-cell mobile computing devices:IEEE 1625.(2016). [303]Institute of Electrical and Electronics Engineers. IEEE Standard for Rechargeable Batteries for Cellular Telephones:IEEE 1725.(2011). [304]Japanese Industrial Standards Committee. Safety tests for portable lithium ion secondary cells and batteries for use in portable electronic applications:JIS C8714.(2017). [305]Battery Safety Organization. Manual for evaluation of energy systems for light electric vehicle(LEV)-secondary lithium batteries:BATSO01.(2008). [306]United nations. Transport of dangerous goods manual of tests and criteria:UN 38.3.(2011). [307]Underwriters Laboratories Inc. Lithium ion battery systems for use in electric power tool and motor operated,heating and lighting appliances:UL 2575.(2012). [308]International Organization for Standardization. Electrically propelled road vehicles — Safety specifications — Part 1:Rechargeable energy storage system (RESS):ISO 6469-1.(2019). [309]ZHANG L,CHENG X,MA Y,et al. Effect of short time externat short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery[J]. Jaurnal of Power Sources,2016,318:154-162. [310]CHEN Z. XIONG R. TIAN J,et al. Model-based fault diagnosis approach on external short circult of lithium-ion battery used in electric vehicles[J]. Applied energy,2016,184:365-374. [311]GB/T 31467.3-2015.电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法[S]. [312]罗龙,刘九庆,欧阳志军等. 动力电池包的密封设计要求及失效性的研究分析[J]. 时代汽车,2019,(14):98-99,102. [313]中国汽车技术研究中心. 中国新能源汽车产业发展报告(2018)[M]. 北京:社会科学文献出版社,2018:28-29. [314]周飞. 纯电动汽车电池包托底分析及改善[J]. 北京汽车,2019,(5):15-17. [315]电动邦. 新能源汽车大数据联盟发布安全报告[R]. 汽车行驶时起火概率最高. 2019. [316]Li Z,Huang J,Yann Liaw B,Metzler V,Zhang J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. J Power Sources. 2014,254:168-82. [317]Huang P,Wang Q,Li K,Ping P,Sun J. The combustion behavior of large scale lithium titanate battery[J],Scientific reports. 2015,5:7788. [318]Gachot G,Grugeon S,Armand M,Pilard S,Guenot P,Tarascon J M,et al. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries[J]. Journal of Power Sources. 2008,178(1):409-21. [319]Feng XN,Xu CS,He XM,Wang L,Zhang G,Ouyang MG. Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity[J]. Journal of Cleaner Production,2018,205(PT.1-1162):447-462. [320]Nagasubramanian G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of applied electrochemistry,2001,31(1):99-104. [321]中国信通院. 《车联网网络安全白皮书》[EB/OL]. 北京:2017. [322]Gui Haixia. Research of the intrusion detection system based on data mining[C]. IEEE,2011. [323]Boyun Zhang,Chen Zhigang,Tang Wensheng,et al. Network security situation assessment based on stochastic game model[C]. Springer,2011. [324]Giovanni Acampora. Exploiting timed automata based fuzzy controllers for designing adaptive intrusion detection systems[J]. Soft Computing,2012,16(7):1183-1196. [325]Xiao-Yan Li,Wang Qing-Xian,Yang Lin. Research of network security situation index system and visualization technology[J]. Journal of China Institute of Communications,2011,32(11). [326]Neminath Hubballi,Biswas Santosh,Nandi Sukumar. Network specific false alarm reduction in intrusion detection system[J]. Security and Communication Networks,2011,4(11):1339-1349. [327]Modi C,Patel D,Borisaniya B,et al. A survey of intrusion detection techniques in Cloud[J]. Journal of Network & Computer Applications,2013,36(1):42-57. [328]Leandros A. Maglaras,Jiang Jianmin. OCSVM model combined with K-means recursive clustering for intrusion detection in SCADA systems[C]. 2014. [329]梅海彬,龚俭,张明华. 基于警报序列聚类的多步攻击模式发现研究[J]. 通信学报,2011,32(5):63-69. [330]白媛. 分布式网络入侵检测防御关键技术的研究[D]. 北京邮电大学,2010. [331]周德懋,李舟军,康荣雷. 基于时间序列分析的网络流量预测模型研究[J]. 现代电子技术,2009,32(8):115-117. [332]向西西,黄宏光,李予东. 基于Kalman算法的网络安全态势预测方法[J]. 计算机仿真,2010,27(12):113-116. [333]司加全. 网络安全态势感知技术研究[D]. 哈尔滨工程大学,2009. [334]张勇. 网络安全态势感知模型研究与系统实现[D]. 中国科学技术大学,2010. [335]汪渊,齐善明,杨槐. 基于数据融合模型的网络安全量化评估系统设计与实现[J]. 计算机科学,2010,37(10):127-129. [336]Bhushan B,Singh M,Hage Y. Identification and control using MLP,Elman,NARXSP and radial basis function networks:a comparative analysis[J]. Artificial Intelligence Review,2012,37(2):133-156. [337]Ronald W. Ritchey,Ammann Paul. Using model checking to analyze network vulnerabilities[C]. 2000. [338]Ahmed M S,Al-Shaer E,Taibah M,et al. Objective risk evaluation for automated security management[J]. Journal of Network & Systems Management,2011,19(3):343-366. [339]贾焰,王晓伟,韩伟红,李爱平,程文聪. YHSSAS:面向大规模网络的安全态势感知系统[J].计算机科学,2011,38(2):4-8. [340]Mergel Ines,Rethemeyer R. Karl,Isett Kimberley. Big Data in Public Affairs Education[J]. Journal of Public Affairs Education,2016,22(2):231-248. [341]张倩文,李璟璐,孙效华. 基于车联网的汽车大数据创新应用路径研究[J]. 包装工程,2017,38(20):67-73. [342]林涛. 基于大数据的交通规划技术创新应用实践——以深圳市为例[J]. 城市交通,2017,15(01):43-53. [343]艾小燕. 武汉市智慧交通管理中的大数据应用研究[D]. 华中科技大学,2018. [344]任凯. 以大数据为基础构建智慧交通管理的思考[J]. 道路交通管理,2017,03:35-36. [345]罗波,王媛媛. 公安交通管理“大数据”建设及运用中存在的问题及对策研究[C]//2019第八届深圳国际智能交通与卫星导航位置服务展览会,深圳,2019.6.20-6.22. [346]朱朝阳,王继业,邓春宇. 电力大数据平台研究与设计[J]. 电力信息与通信技术,2015,13(6):1-7. [347]董亚博. 汽车行业大数据分析系统设计与实现[D]. 北京交通大学,2019. [348]Benjamin Bengfort,Jenny Kim. Hadoop数据分析[M]. 北京:人民邮电出版社,2018. [349]张利兵. Flink原理、实战与性能优化[M]. 北京:机械工业出版社,2019. [350]翟钧,王贤军,刁冠通. 长安新能源汽车大数据平台的研究与应用[EB/OL].https://doc88.com/P-9072562313830.html,2018. [351]刘雷,杜鹏程,贺俊铭,孔庆春,张莉莉. 大数据存储技术[J/OL]. 清华大学,https://wenku.baidu.com/view/8ab144bc6294dd88d0d26bbf.html,2014. [352]国家智能计算机研究开发中心. 互联网海量数据存储及处理调研综述[J/OL],https://www.doc88.com/p-171613030550.html,2012. [353]王震坡,刘鹏,张照生. 新能源汽车大数据分析及应用技术[M]. 北京:机械工业出版社,2018.06.
[展开]

相关推荐

发表评论

同步转发到先晓茶馆

发表评论

手机可扫码阅读