首页 > 图书详情

社会及行为科学研究法(三)·资料分析 社会学;社会学理论;社会学 VIP

售价:¥51.75 ¥69
0人在读 |
0 评分
丛书名:
瞿海源 毕恒达 刘长萱 杨国枢   社会科学文献出版社  2013-07 出版
ISBN:978-7-5097-4498-7

*温馨提示:此类商品为数字类产品,不支持退换货,不支持下载打印

图书简介 目录 参考文献 音频 视频
本书凝聚了台湾社会科学领域一群活跃及具有独特风格的学者共同完成。每位学者在个自的专章中,除了传达专业知识外,也透露各自的学术理念。读 者在阅读此书时,可顺便领略社会科学者们所代表当前台湾的学术文化,这是本书最大的优势所在。
[展开]
  • 社会及行为科学研究法
  • 总目次
  • 序言
  • 第一章 因素分析
    1. 一 前言
    2. 二 因素分析的原则与条件
    3. 三 因素分析的统计原理
    4. 四 因素萃取与数目决定
    5. 五 因素转轴与命名
    6. 六 其他类型变项的因素分析
    7. 七 总结
    8. 延伸阅读
  • 第二章 回归分析
    1. 一 前言
    2. 二 回归模型的设定
    3. 三 回归模型的估计
    4. 四 假设检定
    5. 五 统计诊断
    6. 六 其他回归模型
    7. 七 总结
    8. 延伸阅读
  • 第三章 类别依变项的回归模型
    1. 一 前言
    2. 二 二分类别的回归模型
    3. 三 多分类别模型
    4. 四 不相关选项独立性
    5. 五 修正 IIA 限制的多分类别模型
    6. 六 次序类别资料的回归模型
    7. 七 总结
    8. 延伸阅读
  • 第四章 结构方程模型
    1. 一 前言
    2. 二 模型设定
    3. 三 模型辨识
    4. 四 模型估计
    5. 五 模型评估
    6. 六 模型修正
    7. 七 结构方程模型之报告撰写与注意事项
    8. 八 总结
    9. 延伸阅读
  • 第五章 多层次分析
    1. 一 前言
    2. 二 多层次分析模式
    3. 三 多层次分析变项的中心化
    4. 四 多层次分析实例说明
    5. 五 多层次分析的进阶应用
    6. 六 总结
    7. 延伸阅读
  • 第六章 多向度标示法
    1. 一 前言
    2. 二 核心步骤
    3. 三 常用多向度标示法
    4. 四 相关方法
    5. 五 分析软件
    6. 六 总结
    7. 延伸阅读
  • 第七章 固定样本追踪资料分析
    1. 一 前言
    2. 二 固定样本追踪资料特性
    3. 三 固定与随机效果模型
    4. 四 成长曲线分析
    5. 五 总结
    6. 延伸阅读
  • 第八章 缺失值处理
    1. 一 前言
    2. 二 缺失数据的处理方法
    3. 三 相关研究与统计推论
    4. 四 加权缺失几率插补法
    5. 五 总结
    6. 延伸阅读
  • 第九章 整合分析
    1. 一 前言
    2. 二 为什么要用整合分析?
    3. 三 整合分析介绍
    4. 四 整合分析可能遭遇的问题与因应方式
    5. 五 整合分析的限制与挑战
    6. 六 总结
    7. 延伸阅读
  • 第十章 地理资讯系统应用
    1. 一 前言
    2. 二 发展过程及现况
    3. 三 地理坐标系统及地图投影
    4. 四 资料模型及资料结构
    5. 五 社会科学研究应用
    6. 六 总结
    7. 延伸阅读
  • 第十一章 职业测量方法
    1. 一 前言
    2. 二 职业相关概念之厘清
    3. 三 美国的职业量表之发展与早年的台湾职业量表
    4. 四 国际职业量表的发展
    5. 五 本土化的台湾职业测量
    6. 六 台湾新职业测量与“国际新职业量表”的测量质量之比较
    7. 七 总结
    8. 延伸阅读
    9. 附录一 社会变迁调查新职业分类表
    10. 附录二 台湾新职业声望与社经地位量表
    11. 附录三 台湾新职业声望与社经地位量表与改良版“台湾地区新职业声望与社经地位量表”SPSS 语法
    12. 附录四 高教调查大一新生父亲职业调查问卷
    13. 附录五 有关社会变迁、高教调查与TEPS职业分类之进一步说明
  • 索引
  • 人名索引
[1]王嘉宁、翁俪祯(2002)《探索性因素分析国内应用之评估:1993 至 1999》,《中华心理学刊》,44,239-251。 [2]余民宁(2009)《试题反应理论及其应用》,台北:心理出版社。 [3]邱皓政(2008)《潜在类别模式的原理与应用》,台北:五南图书公司。 [4]黄财尉(2003)《共同因素分析与主成份分析之比较》,《彰化师大辅导学报》,25,63-86。 [5]Akaike,Hirotugu(1987). Factor analysis and AIC. Psychometrika,52,317-322. [6]Anderson,Theodore W.,& Rubin,Herman(1956). Statistical inference in factor analysis.In Jerzy Neyman(Ed.),Proceedings of the third Berkeley symposium on mathematical statistics and probability. Berkeley:The University of California Press. [7]Bartlett,Maurice S.(1950). Tests of significance in factor analysis. British Journal of Psychology,Statistical Section,3,77-85. [8]Bernstein,Ira H.,& Teng,Gary(1989). Factoring items and factoring scales are different:Spurious evidence for multidimensionality due to item categorization. Psychological Bulletin,105,467-477. [9]Cattell,Raymond B.(1966). The scree test for the number of factors. Multivariate Behavioral Research,1,245-276. [10]Comrey,Andrew Laurence,& Lee,Howard Bing(1992). A first course in factor analysis. Hillsdale,NJ:Lawrence Erlbaum Associates,Inc. [11]Coste,Joél,Bouée,Stéphane,Ecosse,Emmanuel,Leplège,Alain,& Pouchot,Jacques(2005). Methodological issues in determining the dimensionality of composite health measures using principal component analysis:Case illustration and suggestions for practice. Quality of Life Research,14,641-654. [12]Cudeck,Rober,& Henly,Susan J.(2003). A realistic perspective on pattern representation in growth data:Comment on Bauer and Curran(2003). Psychological Methods,8,378-383. [13]Daudin,J. J.,Duby,C.,& Trecourt,P.(1988). Stability of principal component analysis studied by the bootstrap method. Statistics,19,241-258. [14]de Winter,Joost C. F.,Dodou,Dimitra,& Wieringa,Peter A.(2009). Exploratory factor analysis with small sample size. Multivariate Behavioral Research,44,147-181. [15]Fabrigar,Leandre R.,Wegener,Duane T.,MacCallum,Robert C.,& Stranhan,Erin J.(1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods,4(3),272-299. [16]Forero,Carlos G.,& Maydeu-Olivares,Alberto(2009). Estimation of IRT graded response models:Limited versus full information methods. Psychological Methods,14(3),275-299. [17]Guilford,Joy P.(1946). New standards for test evaluation. Educational and Psychological Measu-rement,6,427-439. [18]Guttman,Louis(1954). Some necessary conditions for common factor analysis. Psy chometrika,19,149-162. [19]Hair,Joseph F.,Anderson,Rolph E.,Tatham,Ronald L.,& Black,Wiltiam C.(1979). Multivariate data analysis with readings Tulsa. Oklahoma:PPC Books. [20]Hayton,James C.,Allen,David G.,& Scarpello,Vida(2004). Factor retention decisions inexploratory factor analysis:A tutorial on parallel analysis. Organizational Research Methods,7,191-205. [21]Heinen,Ton(1996). Latent class and discrete latent trait models:Similarities and differences. Thousand Oaks,CA:Sage. [22]Horn,John L.(1965). A rationale and test for the number of factors in factor analysis.Psych-ometrika,32,179-185. [23]Howell,Roy D.,Breivik,Einar,& Wilcox,James B.(2007). Reconsidering formative measurement. Psychological Methods,12(2),205-218. [24]Jöreskog,Karl G.(1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika,34,183-202. [25]Jöreskog,Karl G.,& Sörbom,Dag(1993). LISREL 8.14:Structural equation modeling with the SIMPLIS command language. Chicago:Scientific Software International. [26]Kaiser,Henry F.(1960). The application of electronic computers to factor analysis.Educa-tional and Psychological Measurement,20,141-151. [27]Kaiser,Henry F.(1970). A second-generation Little Jiffy. Psychometrika,35,401-415. [28]Kaiser,Henry F.(1974). An index of factoral simplicity. Psychometrika,39,31-36. [29]Kass,Robert E.,& Raftery,Adrian E.(1995). Bayes factors. Journal of the American Statistical Association,90,773-795. [30]Kerlinger,Fred N.(1979). Behavioral research:A conceptual approach. New York:Holt,Rinehart & Winston. [31]Krzanowski,Wojtek J.(1987). Cross-validation in principal component analysis. Bio-metrics,43,575-584. [32]Lambert,Zarred V.,Widlt,Albert R.,& Durand,Richard M.(1990). Assessing sampling variation relative to number-of-factors criteria. Educational and Psychological Measurement,50,33-48. [33]Lazarsfeld,Paul F.,& Henry,Neil W.(1968). Latent structure analysis. New York:Houghton-Mifflin. [34]Linn,Robert L.(1968). A Monte Carlo approach to the number of factors problem.Psycho-metrika,33,37-71. [35]Long,J. Scott(1983). Confirmatory factor analysis. CA:Sage. [36]Lord,Frederic M.,& Novick,Melvin R.(1968). Statistical theories of mental test scores. Rea-ding,MA:Addison-Wesley. [37]MacCallum,Robert C.,Widaman,Keith F.,Zhang,Shaobo,& Hong,Sehee(1999).Sample size in factor analysis. Psychological Methods,4,84-99. [38]Marsh,Herbert W.(1996). Positive and negative global self-esteem:A substantively meaningful distinction or artifactors? Journal of Personality & Social Psychology,70(4),810-819. [39]McDonald,Roderick P.(1967). Non-linear factor analysis. Psychometric Monographs,15,Psychometric Society. [40]McDonald,Roderick P.(1986). Describing the elephant:Structure and function in multivariate data. Psychometrika,51,513-534. [41]McDonald,Roderick P.(1999). Test theory:A unified treatment. Mahwah,NJ:Erlbaum. [42]Molenaar,Peter C. M.,& von Eye,Alexander(1994). On the arbitrary nature of latent variables. In Alexander von Eye & Clifford C. Clogg(Eds.),Latent variable analysis (pp. 226-242). Thousand Oaks,CA:Sage. [43]Montanelli,Richard G.,& Humphreys,Lloyd G.(1976). Latent roots of random data correlation matrices with squared multiple correlations on the diagonals:A Monte Carlo study. Psychometrika,41,341-348. [44]Mulaik,Stanley A.(1972). The foundations of factor analysis. New York:McGraw-Hill Book Co. [45]Muthén,Bengt O.(2003). Statistical and substantive checking in growth mixture modeling:Comment on Bauer and Curran(2003). Psychological Methods,8,369-377. [46]Nunnally,Jum C.(1978). Psychometric theory(2nd ed.). New York:McGraw-Hill. [47]Petter,Stacie,Straub,Detmar W.,& Rai,Arun(2007). Specifying formative constructs in information systems research. MIS Quarterly,31(4),623-656. [48]Rosenberg,Morris(1965). Society and the adolescent self-image. Princeton,NY:Princeton University Press. [49]Russell,Daniel W.(2002). In search of underlying dimensions:The use(and abuse)of factor analysis. Personality and Social Psychology Bulletin,28,1626-1646. [50]Snock,Steren C.,& Gorsuch,Richard L.(1989). Component analysis versus common factor analysis:A Monte Carlo study. Psychological Bulletin,106(1),148-154. [51]Spearman,Charles(1904). General intelligence objectively determined and measured.American Journal of Psychology,15,201-293. [52]Steinley,Douglas,& McDonald,Roderick P.(2007). Examining factor score distributions to determine the nature of latent spaces. Multivariate Behavioral Re-search,42(1),133-156. [53]Thompson,Bruce(2004). Exploratory and confirmatory factor analysis. Washington,DC:American Psychological Association. [54]Thompson,Bruce,& Daniel,Larry G.(1996). Factor analytic evidence for the construct validity of scores:A historical overview and some guidelines. Educational and Psychological Measurement,56,197-208. [55]Thurstone,Louis L.(1947). Multiple factor analysis. Chicago,IL:University of Chicago Press. [56]Turner,Nigel E.(1998). The effect of common variance and structure pattern on random data eigenvalues:Implications for the accuracy of parallel analysis. Educational and Psychological Measurement,58,541-568. [57]Velicer,Wayne F.,& Jackson,Douglas N.(1990). Component analysis versus common factor analysis:Some issues in selecting an appropriate procedure. Multivariate Behavior Research,25(1),1-28. [58]Velicer,Wayne F.(1976). Determining the number of components from the matrix of partial correlations. Psychometrika,41,321-327. [59]Velicer,Wayne F.,Eaton,Cheryl A.,& Fava,Joseph L.(2000). Construct explication through factor or component analysis:A review and evaluation of alternative procedures for determining the number of factors or components. In Richard D. Goffin & Edward Helmes(Eds.),Problems and solutions in human assessment:Honoring Douglas N. Jackson at seventy. Norwell,MA:Kluwer Academic. [60]Weng,Li-jen,& Cheng,Cung-ping(2005). Parallel analysis with undimensional binary data. Educational and Psychological Measurement,65(5),697-716. [61]Wirth,Robert J.,& Edwards,Michael C.(2007). Item factor analysis:Current approaches and future directions. Psychological Methods,12(1),58-79. [62]Wold,Svante(1978). Cross-validatory estimation of the number of components in factor and principal component models. Technometrics,20,397-405. [63]Zwick,William R.,& Velicer,Wayne F.(1986). Factors influencing five rules for determining the number of components to retain. Psychological Bulletin,99,432-442. [64]林惠玲、陈正仓(2000)《统计学:方法与应用》,二版。台北:双叶书廊。 [65]陈超尘(1992)《计量经济学原理》。台北:台湾商务印书馆。 [66]陈彧夏(2001)《计量经济学:单一方程式》。台北:学富文化。 [67]黄旻华(2006a)《态度量表的心理计量学分析:2003年TEDS 统独态度量表的研究》。《选举研究》,13,43-86。 [68]黄旻华(2006b)《如何看待穆斯林社会中政治伊斯兰的民意支持?复层次回归模型的实证分析》。《人文及社会科学集刊》,18,119-169。 [69]Bates,Douglas M.,& Watts,Donald G.(1988). Nonlinear regression analysis and its applica-tions. New York:Wiley. [70]Birnbaum,Allan(1962). On the foundation of statistical inference. Journal of the American Statistical Association,57,269-306. [71]Blalock,Hubert M. Jr.(1964). Causal inferences in nonexperimental research. Chapel Hill:The University of North Carolina Press. [72]Christensen,Ronald(1998). Analysis of variance,design,and regression. Boca Raton:Chap-man and Hall. [73]Dempster,Arthur P.,Rubin,Donald B.,& Tsutakawa,Robert K.(1981). Estimation in covariance components models. Journal of the American Statistical Association,76,341-353. [74]Estrella,Arturo(2007). Generalized canonical regression. Federal Reserve Bank of New York,Staff Reports. [75]Galton,Francis(1885). Presidential address,Section H,Anthropology. Report of the British Association for the Advancement of Science,55,1206-1214. [76]Garson,G. David(1998). Neural networks:An introductory guide for social scientists.Thousand Oaks.,Calif.:Sage. [77]Greene,William H.(2007). Econometric analysis(6th ed.). Upper Saddle River,N.J.:Pren-tice Hall. [78]Gujarati,Damodar,& Porter,Dawn(2008). Basic econometrics(5th ed.). Boston:McGraw Hill. [79]Gunst,Richard F.,& Mason,Robert L.(1980). Regression analysis and its application:A data-oriented approach. New York:M. Dekker. [80]Gyimah-Brempong,Kwabena,& Gyapong,Anthony(1991). Characteristics of education production function:An application of canonical regression analysis. Economics of Education Review,10(1),7-17. [81]Hald,Anders(1999). On the history of maximum likelihood in relation to inverse probability and least squares. Statistical Science,14(2),214-222. [82]Isaak,Alan C.(1985). Scope and methods of political science. Belmont,Calif.:Wadsworth. [83]Jolliffe,Ian T.(1986). Principal component analysis. Springer-Verlag. [84]Kennedy,Peter(1998). A guide to econometrics. Oxford:Blackwell. [85]Kim,Kevin,& Timm,Neil(2007). Univariate and multivariate general linear models.Boca Raton,FL.:Chapman & Hall/CRC. [86]Koenker,Roger(2005). Quantile regression. Cambridge:Cambridge University Press. McFadden,Daniel(1974). Conditional logit analysis of qualitative choice behavior. [87]In Paul Zarembka(Ed.),Frontiers in eonometrics(pp. 105-142). N. Y.:Academic Press. [88]Salchenberger,Linda M. et al.(1992). Neural networks:A new tool for predicting thrift failures. Decision Science,23(4),899-916. [89]Shaw,Ruth G.,& Mitchell-Olds,Thomas(1993). Anova for unbalanced data:An overview. Ecology,74(6),1638-1645. [90]Sufian,Abu Jafar Mohammad(2005). Analyzing collinear data by principle component regression approach:An example from developing countries. Journal of Data Science,3,221-232. [91]Weiss,Robert E.(1995). The influence of variable selection:A bayesian diagnostic perspec-tive. Journal of the American Statistical Association,90,619-625. [92]王鼎铭(2003)《政策认同下的投票效用与选择:空间投票理论在不同选举制度间的比较》。《选举研究》,10(1),131-166。 [93]王鼎铭(2004)《选民为什么会支持黑金?一个理性妥协的解释》。《选举研究》,11(1),93-134。 [94]王鼎铭(2008)《修宪议题与政党偏好的交织:任务型国大选举比例代表制的投票分析》。《台湾政治学刊》,12(2),213-250。 [95]王国川(2004)《图解 SAS 视窗在回归分析上的应用》。台北:五南。 [96]吴明隆(2009)《SPSS 操作与应用——多变量分析实务》。台北:五南。 [97]邱皓政(2006a)《量化研究与统计分析——SPSS 中文视窗版资料分析范例解析》(第三版)。台北:五南。 [98]邱皓政(2006b)《量化研究与统计分析——SPSS 中文视窗版资料分析范例解析》(基础版)。台北:五南。 [99]黄纪(2000)《质变量之计量分析》。谢复生、盛杏湲(主编)《政治学的范围与方法》(页387-411)。台北:五南。 [100]彭昭英、唐丽英(2005)《SAS 1-2-3》。台北:儒林。 [101]Agresti,Alan(1996). An introduction to categorical data analysis. New York:Wiley. Agresti,Alan(2002). Categorical data analysis. New York:Wiley. [102]Aitchison,John,& Silvey,Samuel D.(1957). The generalization of probit analysis to the case of multiple responses. Biometrika,57,253-262. [103]Allison,Paul D.(1991). Logistic regression using the SAS system:Theory and application. Cary,NC:SAS Institute. [104]Amemiya,Takeshi(1981). Qualitative response models:A survey. Journal of Economic Literature,19(4),481-536. [105]Ben-Akiva,Moshe,& Lerman,Steven(1985). Discrete choice analysis:Theory and application to travel demand. Cambridge,Massachusetts:The MIT Press. [106]Ben-Akiva Moshe,& Bolduc,Denis(1996). Multinomial probit with a logit kernel and a general parametric specification of the covariance structure. Working paper,Massachusetts Institute of Technology. [107]Berkerson,Joseph(1944). Apply of the logistic function to bio-assay. Journal of the American Statistical Association,39,357-365. [108]Bierlaire,Michel(1998). Discrete choice models. In Martine Labbe,Gilbert Laporte,Katalin Tanczos,& Philippe Toint(Eds.),Operations research and decision aid methodologies in traffic and transportation management (pp. 203-227). Spinger Verlag,Heidelberg,Germany. [109]Chu,Chaushie(1989). A paired combinational logit model for travel demand analysis.Proceedings of Fifth World Conference on Transportation Research,4,295-309. [110]Daganzo,Carlos(1979). Multinomial probit:The theory and its application to demand forecasting. Academic Press,New York. [111]Downs,Anthony(1957). An economic theory of democracy. New York:Harper and Row. [112]Gill,Jeff(2001). Generalized linear models:A unified approach. Thousand Oaks,CA:Sage. [113]Greene,William H.(2003). Econometric analysis(5th ed.). Prentice Hall. [114]Hamilton,Lawrence C.(2009). Statistics with stata:Updated for version 10. Belmont,Calif.:Thomson/BrooksCole. [115]Hanushek,Erik A.,& Jackson,John E.(1977). Statistical methods for social scientists.New York:Academic Press. [116]Hausman,Jerry A.,& McFadden,Daniel(1984). Specification tests for the multinomial logit model. Econometrica,52,1377-1398. [117]Hausman,Jerry A.,& Wise,David(1978). A conditional probit model for qualitative choice:Discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica,46,403-426. [118]Lewis,Jeffrey B.,& King,Gary(2000). No evidence on directional vs. proximity voting. Political Analysis,8,21-33. [119]Long,J. Scott(1997). Regression models for categorical and limited dependent variables. Thousand Oaks,Calif.:Sage Publications. [120]Long,J. Scott,& Freese,Jeremy(2006). Regression models for categorical dependent variables using stata(2nd ed.). College Station,TX:Stata Press. [121]Louviere,Jordan,Hensher,David A.,Swait,Joffre D.,& Adamowicz,Wiktor(2000). Stated choice methods:Analysis and application. Cambridge:Cambridge University Press. [122]McCullagh,Peter(1980). Regression model for ordinal data. Journal of Royal Statistical Society,42,109-142. [123]McCullagh,Peter,& Nelder,John A.(1989). Generalized linear models. London:Chapman and Hall. [124]McFadden,Daniel(1973). Conditional logit analysis of qualitative choice behavior. In Paul Zarembka(Ed.),Frontier in econometrics (pp. 105-142). New York:Academic Press. [125]McFadden,Daniel(1978). Modeling the choice for residential location. In A. Karquist(Ed.),Spatial integration theory and planning models. Amsterdam:North-Holland Press. [126]McFadden,Daniel(1981). Econometric models for probabilistic choice. In Charles F.Manski & Daniel McFadden(Eds.),Structural analysis of discrete data with econometric applications. Cambridge,Mass:MIT Press. [127]McFadden,Daniel(1984). Econometric analysis of qualitative response models. In Zvi Griliches & Michael D. Intriligator(Eds.),Handbook of econometrics,Vol. 2. Amsterdam:North-Holland. [128]McFadden,Daniel,& Train,Kenneth(2000). Mixed multinomial logit models for discrete response. Journal of Applied Econometrics,15,447-470. [129]McFadden,Daniel,Train,Kenneth,& Tye,William B.(1977). An application of diagnostic test for the independence from irrelevant alternatives property of the multinomial logit model. Transportation Research Record,637,39-46. [130]Merrill,Samuel III.,& Grofman,Bernard(1999). A unified theory of voting.Cambridge University Press. [131]Nelder,John A.,& Wedderburn,Robert W. M.(1972). Generalized linear models.Journal of the Royal Statistical Society,Series A,135 (Part 3),370-384. [132]Rabinowitz,George,& MacDonald,Stuart E.(1989). A directional theory of issue voting. American Political Science Review,83,93-121. [133]Revelt,David,& Train,Kenneth(1998). Mixed logit with repeated choices:Households’ choice of appliance efficiency level. Review of Economics and Statistics,80(4),647-657. [134]Small,Kenneth A.,& Hsiao,Cheng(1985). Multinomial logit specification tests. In-ternational Economic Review,26(3),619-627. [135]Snell,E. J.(1964). A scaling procedure for ordered categorical data. Biometrics,20,592-607. [136]Stokes,Maura E.,Davis,Charles S.,& Koch,Gary G.(2000). Categorical data analysis using the SAS system(2nd ed.). Cary,NC:SAS Institute. [137]Theil,Henri(1969). A multinomial extension of the linear logit model. International Economic Review,10,251-259. [138]Theil,Henri(1970). On the estimation of relationships involving qualitative variables. American Journal of Sociology,76,103-154. [139]Train,Kenneth(1997). Mixed logit models for recreation demand. In Catherine King & Joseph Herriges(Eds.),Valuing the environment using recreation demand models. New York:Elgar Press. [140]Train,Kenneth(2003). Discrete choice method with simulation. Cambridge University Press. [141]Walker,Joan,& Ben-Akiva,Moshe(2002). Generalized random utility model. Math-ematical Social Sciences,43,303-343. [142]Wen,Chieh-hua,& Koppelman,Frank S.(2001). The generalized nested logit model.Tran-sportation Research,35,627-641. [143]Windmeijer,Frank(1995). Goodness of fit measures in binary choice models. Econometric Reviews,14,101-116. [144]Winship,Christopher,& Mare,Robert D.(1984). Regression models with ordinal varia-bles. American Sociological Review,49,512-525. [145]Zhang,Junsen,& Hoffman,Saul D.(1993). Discrete-choice logit models:Testing the IIA property. Sociological Method and Research,22(2),193-213. [146]吴治勋、陈淑惠、翁俪祯、吴英璋(2008)《台湾九二一地震灾难暴露对青少年创伤后压力反应及社会关系的影响之性别差异研究》。《中华心理学刊》,50,367-382。 [147]Akaike,Hirotugu(1987). Factor analysis and AIC. Psychometrika,52,317-332. [148]Anderson,James C.,& Gerbing,David W.(1988). Structural equation modeling in practice:A review and recommended two-step approach. Psychological Bulletin,103,411-423. [149]Barrett,Paul(2007). Structural equation modeling:Adjudging model fit. Personality and Individual Differences,42,815-824. [150]Bentler,Peter M.(1986). Structural modeling and psychometrika:A historical perspective on growth and achievements. Psychometrika,51,35-51. [151]Bentler,Peter M.(1990). Comparative fit indexes in structural models. Psychological Bulletin,107,238-246. [152]Bentler,Peter M.(1995). EQS structural equations program manual. Encino,CA:Multivariate Software. [153]Bentler,Peter M.(2007). On tests and indices for evaluating structural models. Personality and Individual Differences,42,825-829. [154]Bentler,Peter M.,& Bonett,Douglas G.(1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin,88,588-606. [155]Bentler,Peter M.,& Chou,Chih-ping(1987). Practical issues in structural modeling.Sociological Methods & Research,16,78-117. [156]Bentler,Peter M.,& Dudgeon,Paul(1996). Covariance structure analysis:Statistical practice,theory,and directions. Annual Review of Psychology,47,563-592. [157]Bollen,Kenneth A.(1989). Structural equations with latent variables. New York:Wiley. [158]Bollen,Kenneth A.,& Curran,Patrick J.(2006). Latent curve models:A structural equation perspective. Hoboken,NJ:John Wiley. [159]Bollen,Kenneth A.,& Long,J. Scott(Eds.).(1993). Testing structural equation mod-els. Newbury Park,CA:Sage. [160]Boomsma,Anne(2000). Reporting analyses of covariance structures. Structural Equation Modeling,7,461-483. [161]Bozdogan,Hamparsum(1987). Model selection and Akaike’s information criterion(AIC):The general theory and its analytical extensions. Psychometrika,52,345-370. [162]Browne,Michael W.,& Cudeck,Robert(1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research,24,445-455. [163]Browne,Michael W.,& Cudeck,Robert(1993). Alternative ways of assessing model fit. In Kenneth A. Bollen & J. Scott Long(Eds.),Testing structural equation models (pp. 136-162). Newbury Park,CA:Sage. [164]Cliff,Norman(1983). Some cautions concerning the application of causal modeling methods. Multivariate Behavioral Research,18,115-126. [165]Goffin,Richard D.(2007). Assessing the adequacy of structural equation models:Golden rules and editorial policies. Personality and Individual Differences,42,831-839. [166]Heck,Ronald H.(2001). Multilevel modeling. In George A. Marcoulides & Randall E.Schumacker(Eds.),New developments and techniques in structural equation modeling. Mahwah,NJ:Lawrence Erlbaum. [167]Hershberger,Scott L.(2003). The growth of structural equation modeling:1994-2001.Structural Equation Modeling,10,35-46. [168]Hoelter,Jon W.(1983). The analysis of covariance structures goodness-of-fit indices.Sociolo-gical Methods & Research,11,325-344. [169]Holbert,R. Lance,& Stephenson,Michael T.(2002). Structural equation modeling in the communication sciences,1995-2000. Human Communication Research,28,531-551. [170]Hu,Li-tze,& Bentler,Peter M.(1999). Cutoff criteria for fit indexes in covariance structure analysis:Conventional criteria versus new alternatives. Structural Equation Modeling,6,1-55. [171]Jackson,Dennis L.,Gillaspy,J. Arthur,Jr.,& Purc-Stephenson,Rebecca(2009).Reporting practices in confirmatory factor analysis:An overview and some recommendations. Psychological Methods,14,6-23. [172]Jöreskog,Karl G.(1993). Testing structural equation models. In Kenneth A. Bollen & J.Scott Long(Eds.),Testing structural equation models (pp. 294-316). Newbury Park,CA:Sage. [173]Jöreskog,Karl,G. & Sörbom,Dag(1993). LISREL 8:Structural equation modeling with the SIMPLIS command language. Chicago:Scientific Software International. [174]Kaplan,David(1989). Model modification in covariance structure analysis:Application of the expected parameter change statistic. Multivariate Behavioral Research,24,285-305. [175]Kaplan,David(2008). Structural equation modeling:Foundations and extensions(2nd ed.). Thousand Oaks,CA:Sage. [176]Kline,Rex B.(2011). Principles and practice of structural equation modeling(3rd ed.).New York:Guilford. [177]Lei,Pui-wa,& Wu,Qiong(2007). Introduction to structural equation modeling:Issues and practical consideration. Educational Measurement:Issues and Practice,26,33-43. [178]Long,J. Scott(1983). Covariance structure models:An introduction to LISREL.Beverly Hills,CA:Sage. [179]MacCallum,Robert C.,& Austin,James T.(2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology,51,201-226.(See references on p. 204 for other reviews of SEM applications.) [180]MacCallum,Robert C.,Browne,Michael W.,& Sugawara,Hazuki M.(1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods,1,14-149. [181]McDonald,Roderick P.,& Ho,Moon-Ho R.(2002). Principles and practice in reporting structural equation analyses. Psychological Methods,7,64-82. [182]McDonald,Roderick P.,& Marsh,H. W.(1990). Choosing a multivariate model:Noncentrality and goodness of fit. Psychological Bulletin,107,247-255. [183]Meredith,William(1993). Measurement invariance,factor analysis and factorial invariance. Psychometrika,58,525-543. [184]Mueller,Ralph O.(1997). Structural equation modeling:Back to basics. Structural Equation Modeling,4,353-369. [185]Muthén,Bengt O.,& Kaplan,David(1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology,38,171-189. [186]Muthén,Bengt O.,& Kaplan,David(1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables:A note on the size of the model. British Journal of Mathematical and Statistical Psychology,45,19-30. [187]Muthén,Linda K.,& Muthén,Bengt O.(2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling,9,599-620. [188]Nevitt,Jonathan,& Hancock,Gregory R.(2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research,39,439-478. [189]Spearman,Charles(1904). “General intelligence,” objectively determined and measured. American Journal of Psychology,15,201-293. [190]Stapleton,Laura M.,& Leite,Walter L.(2005). A review of syllabi for a sample of structural equation modeling courses. Structural Equation Modeling,12,642-664. [191]Steenkamp,Jan-Benedict E. M.,& Baumgartner,Hans(1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research,25,78-90. [192]Steiger,James H.(2001). Driving fast in reverse:The relationship between software develo-pment,theory,and education in structural equation modeling. Journal of the American Statistical Association,96,331-338. [193]Steiger,James H.(2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences,42,893-898. [194]Tanaka,Jeffrey S.(1987). “How big is big enough?”:Sample size and goodness of fit in structural equation models with latent variables. Child Development,58,134-146. [195]Tucker,Ledyard R.,& Lewis,Charles(1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika,38,1-10. [196]Vandenberg,Robert J.,& Lance,Charles E.(2000). A review and synthesis of the measure-ment invariance literature:Suggestions,practices,and recommendations for organizational research. Organizational Research Methods,3,4-70. [197]Weston,Rebecca,Gore,Paul A. Jr.,Chan,Fong,& Catalano,Denise(2008). An introduction to using structural equation models in rehabilitation psychology. Rehabilitation Psychology,53,340-356. [198]Wolfle,Lee M.(1999). Sewell Wright on the method of path coefficients:An annotated bibliography. Structural Equation Modeling,6,280-291. [199]Yuan,Ke-hai,& Bentler,Peter M.(2004). On chi-square difference and z tests in mean and covariance structure analysis when the base model is misspecified. Educational and Psychological Measurement,64,737-757. [200]Atkins,David C.(2005). Using multilevel models to analyze couple and family treatment data:Basic and advanced issues. Journal of Family Psychology,19,98-110. [201]Bollen,Kenneth A.,& Curran,Patrick J.(2006). Latent curve models:A structural equation perspective. Hoboken,New Jersey:John Wiley & Sons,Inc. [202]Candel,Math J. J. M.(2006). Empirical bayes estimators of the random intercept in multilevel analysis:Performance of the classical,morris and rao version. Computational Statistics & Data Analysis,51,3027-3040. [203]Cohen,Philip N.,& Huffman,Matt L.(2003). Individuals,jobs,and labor markets:The devaluation of women’s work. American Sociological Review,68,443-463. [204]Duncan,Terry E.,Duncan,Susan C. & Strycker,Lisa A.(2006). An introduction to latent variable growth curve modeling:Concepts,issues,and applications(2nd ed.).Mahwah,New Jersey:Lawrence Erlbaum Associates,Publishers. [205]Gelman,Andrew,& Hill,Jennifer(2007). Data analysis using regression and multilevel/hierarchical models. Cambridge,New York:Cambridge University Press. [206]Gurka,Matthew J.(2006). Selecting the best linear mixed model under REML. The Ame-rican Statistician,60(1),19-26. [207]Hannan,Michael T.(1971). Aggregation and disaggregation in sociology. Lexington,Mass:Lexi-ngton Books. [208]Hedeker,Donald,& Gibbons,Robert D.(2006). Longitudinal data analysis. Hoboken,New Jersey:John Wiley & Sons,Inc. [209]Kenny,David A.,Kashy,Deborah A.,& Cook,William L.(2006). Dyadic data analysis. New York:A Division of Guilford Publications,Inc. [210]Luke,Douglas A.(2004). Multilevel modeling. Thousand Oaks,CA.:Sage Publications,Inc. [211]Mandel,Hadas,& Semyonov,Moshe(2006). A welfare state paradox:State interventions and women’s employment opportunities in 22 countries. American Journal of Sociology,111,1910-1949. [212]McFarland,Daniel A.,& Thomas,Reuben J.(2006). Bowling young:How youth voluntary associations influence adult political participation. American Sociological Review,71,401-425. [213]Preacher,Kristopher,Wichman,Aaron L.,MacCallum,Robert C.,& Briggs,Nancy E.(2008). Latent growth curve modeling. Thousand Oaks,CA.:Sage Publications,Inc. [214]Raudenbush,Stephen W.,& Bryk,Anthony S.(2002). Hierarchical linear models:Applications and data analysis methods(2nd ed.). Thousand Oaks,CA.:Sage Publications,Inc. [215]Raykov,Tenko,& Marcoulides,George A.(2006). A first course in structural equation modeling(2nd ed.). Mahwah,New Jersey:Lawrence Erlbaum Associates,Publishers. [216]Schnabel,Kai Uwe,& Baumert,Jurgen(2000). Modeling longitudinal and multilevel data:Practical issues,applied approaches and specific examples. Mahwah,New Jersey:Lawrence Erlbaum Associates,Publishers. [217]Singer,Judith D.,& Willett,John B.(2003). Applied longitudinal data analysis:Mod eling change and event occurrence. New York:Oxford University Press,Inc. [218]Snijders,Tom A. B.,& Bosker,Roel J.(1999). Multilevel analysis:An introduction to basic and advanced multilevel modeling. Thousand Oaks,CA.:Sage Publications,Inc. [219]Sun,Yongmin,& Li,Yuanzhang(2009). Postdivorce family stability and changes in Adolescents’ academic performance:A growth-curve model. Journal of Family Issues,30,1527-1555. [220]Verbeke,Geert,& Molenberghs,Geert(2000). Linear mixed models for longitudinal data. New York:Springer. [221]West,Brady T.,Welch,Kathleen B.,& Galecki,Andrzej T.(2007). Linear mixed mod-els:A practical guide using statistical software. Boca Raton:Chapman & Hall/CRC. [222]Adler,Daniel,& Murdoch,Duncan(2006). rgl:3D visualization device system(OpenGL). R package version 0.68,URL http://rgl.neoscientists.org/. [223]Arabie,Phipps(1991). Was Euclid an unnecessarily sophisticated psychologist? Psychometrika,56(4),567-587. [224]Attneave,Fred(1950). Dimensions of similarity. American Journal of Psychology,63,516-556. [225]Bentler,Peter M.,& Weeks,David G.(1978). Restricted multidimensional scaling methods. Journal of Mathematical Psychology,17,138-151. [226]Boik,Robert J.(1996). An efficient algorithm for joint correspondence analysis. Psychometrika,61(2),255-269. [227]Borg,Ingwer,& Groenen,Patrick J. F.(2005). Modern multidimensional scaling:Theory and applications (2nd ed.). New York:Springer. [228]Broderson,U.(1968). Intra-und interindividuelle mehrdimensionale skalierung eines nach objektiven kriterien variierenden reizmaterials. Unpublished master’s thesis,Christian-Albrechts-Universität. [229]Busing,Frank M. T. A.,Groenen,Patrick J. F.,& Heiser,Willem J.(2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of varia-tion. Psychometrika,70(1),71-98. [230]Carroll,J. Douglas(1972). Individual differences and multidimensional scaling. In Romney N. Shepard,A. Kimball Romney,& Sara B. Nerlove(Eds.),Multidimensional scaling:Theory and applications in the behavioral sciences (Vol. 1). New York:Seminar Press. [231]Carroll,J. Douglas(1976). Spatial,non-spatial and hybrid models for scaling. Psy-chometrika,41(4),439-463. [232]Carroll,J. Douglas,& Chang,Jih-jie(1970). Analysis of individual differences in mul-tidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika,35(3),283-319. [233]Chino,Naohito(1978). A graphical technique for representing the asymmetric relationships between N objects. Behaviormetrika,5,23-40. [234]Constantine,A. G.,& Gower,John C.(1978). Graphical representation of asymmetric matrices. Journal of Royal Statistical Society-Series C,27(3),297-304. [235]Coombs,Clyde Hamilton(1964). A theory of data. New York:John Wiley & Sons. Coombs,Clyde Hamilton(1975). A note on the relation between the vector model and the unfolding model for preferences. Psychometrika,40(1),115-116. [236]Corter,James E.(1998). An efficient metric combinatorial algorithm for fitting additive trees. Multivariate Behavioral Research,33,249-272. [237]Corter,James E.(1996). Tree models of similarity and association(Sage University Papers series:Quantitative Applications in the Social Sciences,series no. 07-112). Thousand Oaks CA:Sage. [238]Cox,Trevor F.,& Cox,Michael A. A.(2000). Multidimensional scaling. Chapman and Hall. [239]de Leeuw,Jan(1977). Applications of convex analysis to multidimensional scaling. In Jean R. Barra,Francois Brodeau,Guy Romier,& Bernard van Cutsem(Eds.),Recent developments in statistics (pp. 133-145). Amsterdam,The Netherlands:North-Holland. [240]de Leeuw,Jan(1988). Convergence of the majorization method for multidimensional scaling. Journal of Classification,5(2),163-180. [241]de Leeuw,Jan,& Heiser,Willem J.(1977). Convergence of correction matrix algorithm for multidimensional scaling. In James C. Lingoes(Ed.),Geometric representations of relational data. Ann Arbor,Michigan:Mathesis Press. [242]de Leeuw,Jan,& Heiser,Willem J.(1982). Theory of multidimensional scaling. In Paruchuri R. Krishnaiah & Laveen N. Kanal(Eds),Handbook of statistics (Vol. 2)(pp. 285-316). Amsterdam:North-Holland. [243]de Leeuw,Jan,& Mair,Patrick(2009a). Multidimensional scaling using majorization:The R package smacof. Journal of Statistical Software,31(3),1-30. [244]de Leeuw,Jan,& Mair,Patrick(2009b). Simple and canonical correspondence analysis using the R. package de Leeuw anacor. Journal of Statistical Software,31(5),1-18. [245]DeSarbo,Wayne S.,Oliver,Richard L.,& De Soete,Geen(1986). A probabilistic multidimensional scaling vector model. Applied Psychological Measurement,10,79-98. [246]DeSarbo,Wayne S.,& Rao,Vithala R.(1984). GENFOLD2:A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data. Jour-nal of Classification,1(1),147-186. [247]Fong,Duncan K. H.,DeSarbo,Wayne S.,Park,Joonwook,& Scott,Crystal J.(2010).A Bayesian vector multidimensional scaling procedure for the analysis of ordered preference data. Journal of the American Statistical Association,105(490),482-492. [248]Gabriel,K. Ruben(1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika,58(3),453-467. [249]Ghose,Sanjoy(1998). Distance representations of consumer perceptions:Evaluating appropriateness by using diagnostics. Journal of Marketing Research,35(2),137-153. [250]Gifi,Albert(1990). Nonlinear multivariate analysis. John Wiley & Sons. [251]Gower,John C.(2006). Divided by a common language:Analyzing and visualizing two-way arrays. In Michael J. Greenacre,& Jörg Blasius(Eds.),Multiple correspondence analysis and related methods (pp. 77-105). London:Chapman & Hall/CRC. [252]Gower,John C.,& Hand,David J.(1996). Biplots. London,UK:Chapman & Hall. [253]Green,Paul E.,Carmone,Frank J.,& Smith,Scott M.(1989). Multidimensional scaling:Concepts and applications. Allyn and Bacon. [254]Greenacre,Michael J.(1988). Correspondence analysis of multivariate categorical data by weighted least squares. Biometrika,75(3),457-467. [255]Greenacre,Michael J.(2007). Correspondence analysis in practice(2nd ed.). London:Chapman & Hall/CRC. [256]Greenacre,Michael J.,& Blasius,Jörg(2006). Multiple correspondence analysis and related methods. London:Chapman & Hall/CRC. [257]Greenacre,Michael J.,& Hastie,Trevor J.(1987). The geometric interpretation of corres-pondence analysis. Journal of the American Statistical Association,82(398),437-447. [258]Groenen,Patrick J. F.,Mathar,Rudolf,& Heiser,Willem J.(1995). The majorization approach to multidimensional scaling for Minkowski distances. Journal of Classifi-cation,12(1),3-19. [259]Guttman,Louis(1968). A general nonmetric technique for finding the smallest coordinate space for configuration of points. Psychometrika,33,469-506. [260]Hair,Joseph F.,Black,Bill,Babin,Barry,Anderson,Rolph E.,& Tatham,Ronald L.(2005). Multivariate data analysis(6th ed.). New York:Prentice Hall. [261]Heiser,Willem J.(1989). Order invariant unfolding analysis under smoothness restrictions. In Geert De Soete,Hubart Feger,& Karl C. Klauer(Eds.),New developments in psychological choice modelling (pp. 3-31). Amsterdam:North-Holland. [262]Heiser,Willem J.,& Meulman,Jacqueline J.(1983). Analyzing rectangular tables with joint and constrained multidimensional scaling. Journal of Econometrics,22,139-167. [263]Hill,Mark O.(1973). Reciprocal averaging:An eigenvector method of ordination.Journal of Ecology,61(1),237-251. [264]Hill,Mark O.(1974). Correspondence analysis:A neglected multivariate technique.Applied Statistics,23,340-354. [265]Jacobowitz,D.(1975). The acquisition of semantic structures. Doctoral dissertation,University of North Carolina at Chapel Hill. [266]Johnson,Richard A.,& Wichern,Dean W.(2007). Applied multivariate statistical analysis(6th ed.). New York:Prentice Hall. [267]Kim,Chulwan,Rangaswamy,Arvind,& DeSarbo,Wayne S.(1999). A quasimetric approach to multidimensional unfolding for reducing the occurrence of degenerate solutions. Multivariate Behavioral Research,34(2),143-180. [268]Kruskal,Joseph B.(1964). Nonmetric multidimensional scaling:A numerical method.Psychometrika,29(2),115-129. [269]Kruskal,Joseph B.,& Carroll,J. Douglas(1969). Geometrical models and badness-of-fit functions. In Paruchuri R. Krishnaiah(Ed.),Multivariate analysis (Vol. II)(pp.639-671). Amsterdam:North-Holland. [270]Kruskal,Joseph B.,& Wish,Myron(1978). Multidimensional scaling. Beverly Hills,CA:Sage Publications. [271]Lattin,James M.,Green,Paul E.,& Carroll,J. Douglas(2003). Analyzing multivariate data (2nd ed.). Duxbury Press. [272]Lê,Sebastien Y.,& Husson,François(2008). SensoMineR:A package for sensory data analysis. Journal of Sensory Studies,23(1),14-25. [273]Lee,Sik-yum,& Bentler,Peter M.(1980). Functional relations in multidimensional scaling. British Journal of Mathematical and Statistical Psychology,33,142-150. [274]Manly,Bryan F. J.(2005). Multivariate statistical methods:A primer(3rd ed.). USA:Chapman and Hall/CRC. [275]Mardia,Kanti V.,Kent,John T.,& Bibby,John M.(1980). Multivariate analysis. UK:Academic Press. [276]Marshall,Albert W.,& Olkin,Ingram(1979). Inequalities:The theory of majorizations and its applications. New York:Academic Press. [277]Messick,Samuel J.,& Abelson,Robert P.(1956). The additive constant problem in multidimensional scaling. Psychometrika,21(1),1-15. [278]Murtagh,Fion(2005). Correspondence analysis and data coding with Java and R.London:Chapman & Hall/CRC. [279]Nenadic′,Oleg,& Greenacre,Michael J.(2006). Computation of multiple correspon-dence analysis,with code in R. In Michael J. Greenacre,& Jörg Blasius(Eds.),Multiple correspondence analysis and related methods (pp. 523-551). London:Chapman & Hall/CRC. [280]Nenadic′,Oleg,& Greenacre,Michael J.(2007). Correspondence analysis in R,with two-and three-dimensional graphics:The ca package. Journal of Statistical Software,20(3). URL http://www.jstatsoft.org/v20/i30. [281]Nishisato,Shizuhiko(1980). Analysis of categorical data:Dual scaling and its appli cations. Toronto,Canada:University of Toronto. [282]Pruzansky,Sandra,Tversky,Amos,& Carroll,J. Douglas(1982). Spatial versus tree representations of proximity data. Psychometrika,47(1),3-24. [283]Ramsay,James O.(1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika,42(2),241-266. [284]Ramsay,James O.(1978). Confidence regions for multidimensional scaling analysis.Psychometrika,43(2),145-160. [285]Ramsay,James O.(1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society,Series A(General),145,285-312. [286]Rencher,Alvin C.(2002). Methods of multivariate analysis(2nd ed.). John Wiley & Sons. [287]Richardson,M. W.(1938). Multidimensional psychophysics. Psychological Bulletin,35,659-660. [288]Saburi,Shingo,& Chino,Naohito(2008). A maximum likelihood method for an asymmetric MDS model. Computational Statistics & Data Analysis,52(10),4673-4684. [289]Sattah,Samuel,& Tversky,Amos(1977). Additive similarity trees. Psychometrika,42(3),319-345. [290]Sattah,Samuel,& Tversky,Amos(1987). On the relation between common and dis-tinctive feature models. Psychological Review,94(1),16-22. [291]Schoenberg,Isaac J.(1935). Remarks to Maurice Fréchet’s article ‘Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert’. Annals of Mathematics,36,724-732. [292]Shepard,Roger N.(1962a). The analysis of proximities(I):Multidimensional scaling with an unknown distance function. Psychometrika,27(2),125-140. [293]Shepard,Roger N.(1962b). The analysis of proximities(II):Multidimensional scaling with an unknown distance function. Psychometrika,27(2),219-246. [294]Shepard,Roger N.(1966). Metric structures in ordinal data. Journal of Mathematical Psychology,3(2),287-315. [295]Shepard,Roger N.(1980). Multidimensional scaling,tree-fitting,and clustering. Science,210(4468),390-398. [296]Shepard,Roger N.(1991). Integrality versus separability of stimulus dimensions:From an early convergence of evidence to a proposed theoretical basis. In James R. Pomerantz,& Gregory R. Lockhead(Eds.),The perception of structure:Essays in honor of Wendell R. Garner (pp. 53-71). American Psychological Association,Washington,DC. [297]Takane,Yoshio(1978). A maximum likelihood method for nonmetric multidimensional scaling:I. The case in which all empirical pairwise orderings are independent-theory. Japanese Psychological Research,20,7-17. [298]Takane,Yoshio(1981). Multidimensional successive categories scaling:A maximum likelihood method. Psychometrika,46(1),9-28. [299]Takane,Yoshio(2006). Applications of multidimensional scaling in psychometrics. In Calyampudi R. Rao & Sandip Sinharay(Eds.),Handbook of statistics,Vol. 26:Psychometrics (Chapter 11,pp. 359-400). Amsterdam:North Holland. [300]Takane,Yoshio,& Carroll,J. Douglas(1981). Nonmetric maximum likelihood multidimensional scaling from directional ranking of similarities. Psychometrika,46,389-405. [301]Takane,Yoshio,& Shibayama,Tadashi(1992). Structures in stimulus identification data. In F. Gregory Ashby(Ed),Probabilistic multidimensional models of perception and cognition (pp. 335-382). Hillsdale,New Jersey:Erlbaum Associates. [302]Takane,Yoshio,Young,Forrest W.,& de Leeuw,Jan(1977). Nonmetric individual differences multidimensional scaling:An alternating least squares method with optimal scaling features. Psychometrika,42(1),7-67. [303]Tatineni,Krishna,& Browne,Michael W.(2000). A noniterative method of joint corresponding analysis. Psychometrika,65(2),157-165. [304]Torgerson,Warren S.(1952). Multidimensional scaling I:Theory and method. Psy-chometrika,17(4),401-419. [305]Torgerson,Warren S.(1958). Theory and methods of scaling. New York:Wiley. [306]Tucker,Ledyard R.(1960). Intra-individual and inter-individual multidimensionality.In Harold Gulliksen and Samuel J. Messick(Eds.),Psychological scaling:Theory and Application. New York:John Wiley and Sons. [307]Tucker,Ledyard R.,& Messick,Samuel J.(1963). An individual difference model for multidimensional scaling. Psychometrika,28,333-367. [308]Van Deun,K.,Groenen,Patrick J. F.,Heiser,Willem J.,Busing,Frank M. T. A.,& Delbeke,Luc(2005). Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model. Psychometrika,70(1),45-69. [309]Wedel,Michel,& Bijmolt,Tammo H. A.(2000). Mixed tree and spatial representations of dissimilarity judgments. Journal of Classification,17(2),243-271. [310]Young,Forrest W.(1970). Nonmetric multidimensional scaling:Recovery of metric information. Psychometrika,35(4),455-473. [311]Young,Forrest W.(1985). Multidimensional scaling. In Samuel Kotz,Norman L.Johnson,& Campbell B. Read(Eds.),Encyclopedia of statistical sciences Vol. 5 (pp.649-659). New York:Wiley. [312]Young,Forrest W.,& Hamer,Robert M.(1994). Theory and applications of multidi-mensional scaling. Hillsdale,New Jersey:Erlbaum Associates. [313]Young,Forrest W.,& Torgerson,Warren S.(1967). TORSCA:A FORTRAN IV program for Shepard-Kruskal multidimensional data analysis. Behavioral Science,12,498. [314]Young,Gale,& Householder,A. S.(1938). Discussion of a set of points in terms of their mutual distances. Psychometrika,3(1),19-22. [315]于若蓉(2002)《人力资源调查合并资料——样本流失问题初探》。《调查研究》,11,5-30。 [316]于若蓉(2005)《样本流失与劳动参与:华人家庭动态资料库的分析》。《调查研究》,18,45-72。 [317]于若蓉、林季平(2006)《“人力资源拟追踪调查资料库”之扩增》,国科会社会科学研究中心研究计划报告书(NSC 94-2420-H-001-012-B9503)。 [318]王天苗(2009)《“特殊教育长期追踪资料库”简介》。《人文与社会科学简讯》,10(3),107-116。 [319]李唯君(1996)《收支动态长期追踪研究起源与发展》。《调查研究》,2,159-178。 [320]吴齐殷、张明宜、陈怡茜(2008)《寻找机制与过程:长期追踪研究的功用》。《量化研究学刊》,2,1-26。 [321]林季平、于若蓉(2005)《“人力资源拟追踪调查资料库”之建构》,国科会社会科学研究中心研究计划报告书(NSC 93-2419-H-001-B9303)。 [322]林季平、章英华(2003)《人力运用拟追踪调查资料库的产生过程、应用现况及未来发展》。《调查研究》,13,39-69。 [323]庄慧玲(1996)《由国外经验看台湾人力资源 panel data 资料库建立之展望》。《经济论文丛刊》,24,413-433。 [324]杨李唯君(2008)《美国收支动态长期追踪调查的近期发展:四十周年回顾》。《调查研究》,23,155-191。 [325]Ai,Chunrong,& Li,Qi(2008). Semi-parametric and non-parametric methods in panel data models. In László Mátyás & Patrick Sevestre(Eds.),The econometrics of panel data:Fundamentals and recent developments in theory and practice (3rd ed.)(pp.451-478). New York:Apringer-Verlag. [326]Arellano,Manuel(2003). Panel data econometrics. Oxford:Oxford University Press. Baltagi,Badi H.(2008). Econometric analysis of panel data (4th ed.). Chichester:Wiley. [327]Bijleveld,Catrien C. J. H.,Kamp,Leo H. Th. van der,Mooijaart,Ab,Kloot,Willem van der,Leeden,Rien van der,& Burg,Eeke van der(1998). Longitudinal Data Analysis:Designs,Models and Methods. London:Sage Publications. [328]Blanchard,Pierre(2008). Software review. In László Mátyás & Patrick Sevestre(Eds.),The econometrics of panel data:Fundamentals and recent developments in theory and practice (3rd ed.)(pp. 907-950). New York:Apringer-Verlag. [329]Budig,Michelle J.,& England,Paula(2001). The wage penalty for motherhood. American Sociological Review,66,204-225. [330]Chu,C.Y. Cyrus,Xie,Yu,& Yu,Ruoh-rong(2007). Effects of sibship structure revisited:Evidence from intra-family resource transfer in Taiwan. Sociology of Education,80,91-113. [331]Chu,C. Y. Cyrus,& Yu,Ruoh-rong(2010). Understanding Chinese families:A comparative study of Taiwan and southeast China. Oxford:Oxford University Press. [332]Clark,Andrew E.(2003). Unemployment as a social norm:Psychological evidence from panel data. Journal of Labor Economics,21,323-351. [333]Duncan,Greg J.,& Kalton,Graham(1987). Issues of design and analysis of surveys across time. International Statistical Review,55,97-117. [334]Duncan,Terry E.,Duncan,Susan C.,& Strycker,Lisa A.(2006). An introduction to latent variable growth curve modeling:Concepts,issues,and applications(2nd ed.). Mahwah,NJ:Lawrence Erlbaum Associates,Publishers. [335]Florens,Jean-Pierre,Fougère,Denis,& Mouchart,Michel(2008). Duration models and point processes. In László Mátyás & Patrick Sevestre(Eds.),The econometrics of panel data:Fundamentals and recent developments in theory and practice (3rd ed.)(pp. 547-601). New York:Apringer-Verlag. [336]Glenn,Norval D.(2005). Cohort analysis(2nd ed.). Thousand Oaks,CA:Sage Publications. [337]Goldstein,Harvey(2003). Multilevel statistical models(3rd ed.). London:Arnold. [338]Halaby,Charles N.(2004). Panel models in sociological research:Theory into practice.Annual Review of Sociology,30,507-544. [339]Hausman,Jerry A.(1978). Specification tests in econometrics. Econometrica,46,1251-1271. [340]Hosmer,David W.,Lemeshow,Stanley,& May,Susanne(2008). Applied survival analysis:Regression modeling of time-to-event data(2nd ed.). Hoboken,NJ:John Wiley & Sons,Inc. [341]Hsiao,Cheng(2003). Analysis of panel data(2nd ed.). New York:Cambridge University Press. [342]Huang,Min-hsiung,& Hauser,Taissa S.(2010). Tracking persons from high school through adult life — Lessons from the Wisconsin Longitudinal Study. EurAmerica,40,311-358. [343]Kasprzyk,Daniel,Duncan,Greg J.,Kalton,Graham,& Singh,M. P.(Eds.).(1989). Panel surveys. New York:John Wiley & Sons,Inc. [344]Lin,Shin-jong(2006). Unemployment and suicide:Panel data analyses. Social Science Journal,41,727-732. [345]Mason,William M.,& Fienberg,Stephen E.(1985). Cohort analysis in social research:Beyond the identification problem. New York:Apringer-Verlag. [346]Mátyás,László,& Sevestre,Patrick(Eds.).(2008). The econometrics of panel data:Fundam-entals and recent developments in theory and practice(3rd ed.). New York:Apringer-Verlag. [347]National Longitudinal Survey(NLS). website:http://www.bls.gov/nls/. [348]Panel Study of Income Dynamics(PSID). website:http://psidonline.isr.umich.edu/. [349]Raudenbush,Stephen W.,& Bryk,Anthony S.(2002). Hierarchical linear models:Applications and data analysis methods(2nd ed.). Thousand Oaks,CA:Sage Publications. [350]Solon,Gary(1989). Effects of rotation group bias on estimation of unemployment.Journal of Business and Economic Statistics,4,105-109. [351]Waldfogel,Jane(1997). The effects of children on women’s wages. American Sociological Review,62,209-217. [352]Winship,Christopher,& Harding,David J.(2008). A mechanism-based approach to the identification of age period cohort models. Sociological Methods Research,36,362-401. [353]Wisconsin Longitudinal Study(WLS). website:http://www.ssc.wisc.edu/wlsresearch/. [354]Wisconsin Longitudinal Study Handbook(2006),available from http://www.ssc.wisc.edu/wlsresearch/. [355]Wooldridge,Jeffrey M.(2010). Econometric analysis of cross section and panel data(2nd ed.). Cambridge:The MIT Press. [356]Yu,Wei-hsin,& Su,Kuo-hsien(2006). Gender,sibship structure,and educational inequality in Taiwan:Son preference revisited. Journal of Marriage and Family,68,1057-1068. [357]Anderson,Theodore W.(1957). Maximum likelihood estimates for the multivariate normal distribution when some observations are missing at random. Journal of American Statistical Association,52,200-203. [358]Bartlett,Maurice S.(1937). Some examples of statistical methods of research in agriculture and applied botany. Journal of the Royal Statistical Society. Series B,4,137-170. [359]Bose,Chameli(1943). Note on the sampling error in the method of double sampling.Sankhya,6,330. [360]Buck,S. F.(1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society. Series B,22,302-306. [361]Carpenter,James R.,Kenward,Michael G.,& Vansteelandt,Stijn(2006). A comparison of multiple imputation and doubly robust estimation for analyses with missing data. Journal of the Royal Statistical Society. Series A,169,571-584. [362]Cheng,Philip E.(1994). Nonparametric estimation of mean functional with data missing at random. Journal of American Statistical Association,89,81-87. [363]Cheng,Philip E.,Liou,Jiun W.,Liou,Michelle,& Aston,John A. D.(2007). Linear information models:An introduction. Journal of Data Science,5,297-313. [364]Cheng,Philip E.,Liou,Michelle,& Aston,John A. D.(2010). Likelihood ratio tests with three-way tables. Journal of American Statistical Association,105,740-749. [365]Cochran,William G.,& Rubin,Donald B.(1973). Controlling bias in observational studies:A review. Sankhyã:The Indian Journal of Statistics,Series A,35,417-446. [366]Dempster,Arthur P.,Laird,Nan M.,& Rubin,Donald B.(1977). Maximum likelihood from incomplete data via the EM algorithm(with discussion). Journal of the Royal Statistical Society. Series B,39,1-38. [367]Freedman,David A.(1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models:Comment. Journal of American Statistical Association,94,1121-1122. [368]Gelfand,Alan E.,& Smith,Adrian F. M.(1990). Sampling-based approaches to calculating marginal densities. Journal of American Statistical Association,85,398-409. [369]Hastings,W. K.(1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika,57,97-109. [370]Healy,Michael J. R.,& Westmacott,Michael(1956). Missing values in experiments analyzed on automatic computers. Applied Statistics,5,203-206. [371]Horvitz,Daniel G.,& Thompson,Donovan J.(1952). A generalization of sampling without replacement from a finite population. Journal of American Statistical Association,47,663-685. [372]Jennrich,Robert I.,& Schluchter,Mark D.(1986). Unbalanced repeated measures models with structured covariance matrices. Biometrics,42,805-820. [373]Kalton,Graham,& Kish,Leslie(1981). Two efficient random imputation procedures.In Proceedings of the Survey Research Methods Section (pp. 146-151). American Statistical Association. [374]Kang,Joseph D. Y.,& Schafer,Joseph L.(2007). Demystifying double robustness:A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science,22,523-539. [375]Kim,Jae Kwang,Brick,J. Michael,Fuller,Wayne A.,& Kalton,Graham(2006). On the bias of the multiple imputation variance estimator. Journal of Royal Statistical Society. Series B,68,509-521. [376]Little,Roderick J. A.(1992). Regression with missing X’s:A review. Journal of American Statistical Association,87,1227-1237. [377]Little,Roderick J. A.,& Rubin,Donald B.(2002). Statistical analysis with missing data. New York:Wiley. [378]Metropolis,Nicholas,Rosenbluth,Arianna W.,Rosenbluth,Marshall N.,Teller,Augusta H.,& Teller,Edward(1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics,21,1087-1091. [379]Neyman,Jerzy(1938). Contribution to the theory of sampling human populations.Journal of American Statistical Association,33,101-116. [380]Ning,Jianhui,& Cheng,Philip E.(2010). A comparison study of nonparametric imputation methods. Statistics and Computing,in press. [381]Orchard,Terence,& Woodbury,Max A.(1972). A missing information principle:Theory and applications. Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability,1,697-715. [382]Potthoff,Richard F.,& Roy,Samarendra N.(1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika,51,313-326. [383]Qin,Jing,Shao,Jun,& Zhang,Biao(2008). Efficient and doubly robust imputation for covariate-dependent missing responses. Journal of American Statistical Association,103,797-810. [384]Rosenbaum,Paul R.,& Rubin,Donald B.(1983). The central role of the propensity score in observational studies for causal effects. Biometrika,70,41-55. [385]Rubin,Donald B.(1976). Inference and missing data. Biometrika,63,581-592. [386]Rubin,Donald B.(1978). Multiple imputation in sample surveys. In Proceedings of the Survey Research Methods Sections (pp. 20-34). American Statistical Association. [387]Rubin,Donald B.(1987). Multiple imputation for nonresponse in surveys. New York:Wiley. [388]Schafer,Joseph L.(1997). Analysis of incomplete multivariate data. London:Chapman and Hall. [389]Scharfstein,Daniel O.,Rotnitzky,Andrea,& Robins,James M.(1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. Journal of American Statistical Association,94,1096-1120. [390]Smith,Peter J.(2002). Analysis of failure and survival data. London:Chapman & Hall. [391]Tanner,Martin A.,& Wong,Wing-hung(1987). The calculation of posterior distributions by data augmentation. Journal of American Statistional Association,82,528-540. [392]Verbeke,Geert,& Molenberghs,Geert(2000)Linear mixed models for longitudinal data. New York:Springer. [393]Von Neumann,John(1951). Various techniques used in connection with random digits.National Bureau of Standards. Applied Mathematics Series,11,36-38. [394]Wilkinson,G. N.(1958). The analysis of variance and derivation of standard errors for incomplete data. Biometrics,14,360-384. [395]Wilks,Samuel S.(1932). Moments and distributions of estimates of population parameters from fragmentary samples. The Annals of Mathematical Statistics,3(3),163-195. [396]Yates,Fard(1933). The analysis of replicated experiments when the field results are incomplete. Empire Journal of Experimental Agriculture,1,129-142. [397]林邦杰(1987)《整合分析的理论及其在国内的应用》。《教育与心理研究》,10,1-38。 [398]Atkinson,Donald R.,Furlong,Michael J.,& Wampold,Bruce E.(1982). Statistical significance,reviewer evaluations,and the scientific process:Is there a(statistically)significant relationship? Journal of Counseling Psychology,29(2),189-194. [399]Boroditsky,Lera(2001). Does language shape thought? Mandarin and English speakers’ conceptions of time. Cognitive Psychology,43(1),1-22. [400]Chen,Jenn-yeu(2007). Do Chinese and English speakers think about time differently?Failure of replicating Boroditsky(2001). Cognition,104,427-436. [401]Cooper,Harris,& Hedges,Larry V.(Eds.).(1994). The handbook of research synthesis. New York:Russell Sage Foundation. [402]Gibson,Eleanor J.,& Levin,Harry(1978). The psychology of reading. Cambridge,MA:The MIT Press. [403]Glass,Gene V.(1976). Primary,secondary,and meta-analysis of research. Educational Researcher,5(10),3-8. [404]Glass,Gene V.(2000). Meta-analysis at 25. Retrieved,March 1,2010,from http://glass.ed.asu.edu/gene/papers/meta25html. [405]Hunt,Morton(1997). How science takes stock:The story of meta-analysis. New York:Russell Sage Foundation. [406]Hunter,John E.,& Schmidt,Frank L.(1990). Integrating research findings across studies:General problem and an example. In John E. Hunter & Frank L. Schmidt(Ed.),Methods of meta-analysis (pp. 23-42). Newsbury Park,CA:Sage. [407]Light,Richard J.,& Pillemer,David B.(1984). Summing up:The science of reviewing research (Preface and Introduction). Harvard University Press. [408]Morris,Scott B.,& DeShon,Richard P.(2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods,7(1),105-125. [409]Rosenthal,Robert(1991). Meta-analytic procedures for social research. Newbury Park,C.A.:Sage. [410]Rosenthal,Robert(1994). Parametric measures of effect size. In Harris Cooper & Larry V. Hedges(Eds.),The handbook of research synthesis (pp. 231-244). New York:Russell Sage Foundation. [411]Rozeboom,William W.(1960). The fallacy of the null hypothesis significance test.Psychological Bulletin,57(5),416-428. [412]Salthouse,Timothy A.,& Somberg,Benjamin L.(1982). Isolating the age deficit in speeded performance. Journal of Gerontology,37(1),59-63. [413]Schmidt,Frank L.(1992). What do data really mean? Research findings,meta-analysis,and cumulative knowledge in psychology. American Psychologist,47(10),1173-1181. [414]Underwood,Benton J.(1957). Interference and forgetting. Psychological Review,64(1),49-60. [415]石计.(2001)《“士林人文社会实验室”的跨学门整合方法与数字化社会地图的建构》。《“行政院”国家科学委员会人文与社会科学简讯》,3(4),60-66。 [416]林季.(2008)《影响加入台湾全民健保的社会经济不均等要素》。《社会政策与社会工作学刊》,12(2),1-27。 [417]林季平、林昭.(2003)《调查、推估、分析未参加全民健保者原因》。中央健康保险局委托研究计划。 [418]范毅军、白碧玲、严汉.(2001)《空间资讯技术应用于汉学研究的价值与作用》。《汉学研究通讯》,78,75-82。 [419]范毅军、廖泫.(2008)《历史地理资讯系统建立与发展》。《地理资讯系统季刊》,2(1),23-30。 [420]章英华、林季平、刘千.(2010)《台湾原住民社会变迁与政策评估研究问卷调查之抽样与执行》。黄树民等(编)《台湾原住民社会变迁与政策评估研究》。台北:中央研究院民族学研究所。 [421]黄树民、章英华(编.(2010)《台湾原住民社会变迁与政策评估研究》。台北:中央研究院民族学研究所。 [422]潘桂.(2005)《地图学原理》。台北:三民书局。 [423]蔡博文、吴淑琼、李介.(2004)《台湾 2000年户口住宅普查与门牌地址之整合应用——长期照护设施空间分派分析》。《人口学刊》,28,135-152。 [424]Abdul-Rahman,A.,& Pilouk,Morako.(2008). Spatial data modeling for 3D GIS.Springer. [425]Bolstad,Paul V.(2005). GIS fundamentals:A first text on geographic information systems(2nd ed.). White Bear Lake,MN:Eider Press. [426]Burrough,Peter A.,& McDonnell,Rachael A.(1998). Principles of geographical information systems. Oxford:Oxford University Press. [427]Chang,Kang-tsun.(2007). Introduction to geographic information system(4th ed.).McGraw Hill. [428]Cook,Robert N.(1966). The CULDATA system. In Robert N. Cook & James L. Ken nedy(Eds.),Proceedings of a tri-state conference on a comprehensive unified land data system(CULDATA)(pp. 53-57). College of Law,University of Cincinnati. [429]Corbett,James P.(1979). Topological principles in cartography. Technical Paper 48,US Bureau of the Census,Suitland(also published in Proceedings of AUTOCARTO 4 1975,pp. 22-33. American Congress on Survey and Mapping/American Society for Photogrammetry,Washington D.C.). [430]Dangermond,Jack,& Smith,Lovell K.(1988). Geographic information systems and the revolution in cartography:The nature of the role played by a commercial organization. The American Cartographer,15(3),301-310. [431]DeMers,Michael N.(2004). Fundamentals of geographic information systems(3rd ed.). New York:John Wiley. [432]Dewdney,John C.,& Rhind,David W.(1986). The British and United States censuses of population. In Michael Pacione(Ed.),Population geography:Progress and prospects (pp. 35-57). London:Croom Helm. [433]Diello,J.,Kirk,K.,& Callander,J.(1968). The development of an automatic cartographic system. Cartographic Journal,6(1),9-17. [434]Foresman,Timothy W.(Ed.).(1998). The history of geographic information systems:Perspectives from the pioneers. Prentice Hall. [435]Fotheringham,A. Stewart,Brunsdon,Chris,& Charlton,Marti.(2000). Quantitative geography:Perspectives on spatial data analysis. Sage Publications Ltd. [436]Fotheringham,A. Stewart,& Rogerson,Pete.(1994). Spatial analysis and GIS. PA:Taylor & Francis Ltd. [437]Goodchild,Michael F.(1987). A spatial analytical perspective on geographical information systems. International Journal of Geographical Information Systems,1,327-344. [438]Hagerstrand,Torste.(1967). The computer and the geographer. Transaction of the Institute of British Geography,42,1-20. [439]Kraak,Menno-jan,& Ormeling,Ferja.(2002). Cartography:Visualization of spatial data. Prentice Hall. [440]Li,Ki-joune,& Vangenot,Christelle(Eds.).(2005). Web and wireless geographical in-formation systems. Springer. [441]Lin,Ji-ping,& Liaw,Kao-le.(2000). Labor migrations in Taiwan:Characterization and interpretation based on the data of the 1990 census. Environment and Planning A,32(9),1689-1709. [442]Lin,Ji-pin.(2006). The dynamics of labor migration in Taiwan:Evidence from the 1990 and 2000 Taiwan population censuses. Geography Research Forum,26,61-92. [443]Maguire,David J.(1991). An overview and definition of GIS. In David J. Maguire,Michael F. Goodchild,& David W. Rhind(Eds.),Geographical information system:Principles and applications (pp. 9-20). London:Longman. [444]Maguire,David J.,Goodchild,Michael F.,& Rhind,David W.(1997). Geographic in formation systems:Principles and applications. Longman Scientific and Technical,Harlow. [445]NIM.(1997). Department of defense world geodetic system 1984:Its definition and relationships with local geodetic systems.(NIMA TR8350.2 3rded.). 4 July 1997. Bethesda,MD:National Imagery and Mapping Agency. [446]Okabe,Atsuyuk.(2006). GIS-based studies in the humanities and social sciences.Taylor & Francis. [447]Ott,Thomas,& Swiaczny,Fran.(2001). Time-integrative geographic information systems. New York:Springer. [448]Parker,Robert Nash,& Asencio,Emily K.(2008). GIS and spatial analysis for the social sciences:Coding,mapping,and modeling. Routledge. [449]Peng,Zhong-ren,& Tsou,Ming-hsian.(2003). Internet GIS:Distributed geographic information services for the internet and wireless networks. John Wiley & Sons,Inc. Rana,Sanjay,& Sharma,Jayan.(2006). Frontiers of geographic information technol-ogy. Springer. [450]Rhind,David W.(1988). Personality as a factor in the development of a new discipline:The case of computer-assisted cartography. The American Cartographer,15(3),277-289. [451]Rhind,David W.,& Mounsey,Helen M.(1989). The Chorley committee and handling geographic information. Environment and Planning A,21(5),571-285. [452]Schimidt,Allan H.,& Zafft,Wayne A.(1975). Progress of the Harvard university laboratory for computer graphics and spatial analysis. In John C. Davis & Michael J. McCullagh(Eds.),Display and analysis of spatial data (pp. 231-243). London:Wiley. [453]Schweitzer,Richard H.(1973). Mapping urban America with automated cartography.Washington,DC:Dept. of Commerce,US Bureau of the Census,Geography Division. [454]Slocum,Terry A.,McMaster,Robert B.,Kessler,Fritz C.,& Howard,Hugh H.(2004). Thematic cartography and visualization(2nd ed.). NJ:Prentice Hall. [455]Steinberg,Steven J.,& Steinberg,Sheila L.(2006). GIS:Geographic information systems for the social sciences:Investigating space and place. London:Sage. [456]Taylor,D. R. Frase.(1991). GIS and developing nations. In David J. Maguire,Michael F. Goodchild,& David W. Rhind(Eds.),Geographic information systems:Principles and applications (Vol. 2,pp. 71-84). London:Longman. [457]Tobler,Waldo R.(1959). Automation and cartography. Geographical Review,49,526-534. [458]Tomlinson,Roger F.(1967). An introduction to the geographic information system of the Canada land inventory. Ottawa:Department of Forestry and Rural Development,Ottawa. [459]Tomlinson,Roger F.(1988a). Reflections on the revolution:the transition from analogue to digital representations of space,1958-1988. The American Cartographer,15(3),243-334. [460]Tomlinson,Roger F.(1988b). The impact of the transition from analogue to digital cartographic representation. The American Cartographic,15(3),249-262. [461]Tomlinson,Roger F.(2005). Thinking about GIS:Geographic information system planning for managers. ESRI Press. [462]Torge,Wolfgan.(1991). Geodesy(2nd ed.). New York:deGruyter. [463]Townshend,John R. G.(1991). Environmental database and GIS. In David J. Maguire,Michael F. Goodchild,& David W. Rhind(Eds.),Geographical information systems:Principles and application (Vol. 2,pp. 201-216). London:Longman. [464]Tsai,Bor-wen,Chang,Kang-tsung,Chang,Chang-yi,& Chu,Chiehmin.(2006).Analyzing spatial and temporal changes of aquaculture in Yunlin county,Taiwan.Professional Geographer,58,161-171. [465]Wallerstein,Immanue.(1974). The modern world system,capitalist agriculture and the origins of the European world economy in the sixteenth century. New York:Academic Press. [466]Wise,Stephe.(2002). GIS basics. London:Taylor & Francis. [467]王丽云、游锦云(2005)《学童社经背景与暑期经验对暑期学习成就进展影响之研究》。《教育研究集刊》,51(4),1-41。 [468]“行政院”主计处(1992)《中华民国职业标准分类》(第五次修正版)。 [469]何友辉、廖正宏(1969)《今日中国社会职业等级评价之研究》。《国立台湾大学社会学刊》,5,151-154。 [470]吴怡瑄、叶玉珠(2003)《主题统整教学、年级、父母社经地位与国小学童科技创造力之关系》。《师大学报:教育类》,48(2),239-260。 [471]巫有镒(1999)《影响国小学生学业成绩的因果机制——以台北市和台东县做比较》。《教育研究集刊》,43,213-242。 [472]巫有镒(2007)《学校与非学校因素对台东县原、汉国小学生学业成就的影响》。《台湾教育社会学研究》,7(1),29-67。 [473]林生传(2000)《教育社会学》。台北:巨流。 [474]林俊莹(2004)《社会网络与学校满意度之关联性:以高雄县市国小学生家长为例》。《台湾教育社会学研究》,4(1),113-147。 [475]林南(2004)《社会资本的建构与效应:台湾、中国大陆、美国三地追踪研究》。中央研究院主题研究计划。 [476]林清江(1971)《教师角色理论与师范教育改革动向之比较研究》。《国立台湾师范大学教育研究所集刊》,13,45-176。 [477]林清江(1981)《教师职业声望与专业形象之调查研究》。《国立台湾师范大学教育研究所集刊》,23,99-177。 [478]林慧敏、黄毅志(2009)《原汉族群、补习教育与学业成绩关联之研究:以台东地区国中二年级生为例》。《当代教育研究》,17(3),41-81。 [479]孙清山、黄毅志(1996)《补习教育、文化资本与教育取得》。《台湾社会学刊》,19,95~139。 [480]马信行(1997)《一九九○人口普查中教育与职业数据之分析》。《国立政治大学学报》,75,29-66。 [481]马信行(1998)《台湾乡镇市区社会地位指标之建立》。《教育与心理研究》,21,37-84。 [482]张苙云(2003)《台湾教育长期追踪数据库的规划:问卷架构、测验编制与抽样设计》。论文发表于 2003年台湾与国际教育长期追踪数据库东部工作坊。台东市:国立台东师范学院教育研究所。 [483]许嘉猷(1986)《社会阶层化与社会流动》。台北:三民。 [484]许嘉猷(1994)《阶级结构的分类、定位与估计:台湾与美国实证研究之比较》。《阶级结构与阶级意识比较研究论文集》(页109-151)。台北:中央研究院欧美所。 [485]许嘉猷、黄毅志(2002)《跨越阶级的界限?兼论黑手变头家的实证研究结果及与欧美社会之一些比较》。《台湾社会学刊》,27,1-59。 [486]陈怡靖(2001)《台湾地区高中/技职分流与教育机会不均等性之变迁》。《教育研究集刊》,47,253-282。 [487]陈奎熹(1993)《教育社会学》。台北:三民。 [488]陈淑丽(2008)《二年级国语文补救教学研究:一个长时密集的介入方案》。《特殊教育研究学刊》,33(2),27-48。 [489]章英华、傅仰止(主编)(2005)《台湾地区社会变迁基本调查计划第四期第五次调查计划执行报告》。台北:中央研究院社会学研究所。 [490]章英华、薛承泰、黄毅志(1996)《教育分流与社会经济地位——兼论:对技职教育改革的政策意涵》。台北:行政院教育改革审议委员会。 [491]彭森明(2003)《台湾高等教育数据库之建置及相关议题之探讨》。国科会研究计画。 [492]曾宪雄、张维安、黄国祯(2003)《建立中小学数字学习指标暨城乡数字落差之现况调查、评估与形成因素分析》。教育部研究计划。 [493]黄毅志(1997)《社会科学与教育研究本土化:台湾地区社经地位(SES)测量之重新考虑》。载于侯松茂(主编)《八十五学年度师范学院教育学术论文发表会论文集》(页189-216)。台东:国立台东师范学院。 [494]黄毅志(1998)《台湾地区新职业分类的建构与评估》。《调查研究》,5,5-32。 [495]黄毅志(2000)《教育研究中的学童自陈问卷信、效度分析》。《国科会研究汇刊:人文及社会科学》,10(3),403-415。 [496]黄毅志(2002)《社会阶层、社会网络与主观意识:台湾地区不公平的社会阶层体系之延续》。台北:巨流。 [497]黄毅志(2003)《“台湾地区新职业声望与社经地位量表”之建构与评估:社会科学与教育社会学研究本土化》。《教育研究集刊》,49(4),1-31。 [498]黄毅志(2005)《教育研究中的“职业调查封闭式问卷”之信效度分析》。《教育研究集刊》,51(4),43-71。 [499]黄毅志(2008)《如何精确测量职业地位?“改良版台湾地区新职业声望与社经地位量表”之建构》。《台东大学教育学报》,19(1),151-159。 [500]黄毅志(2009)《国际新职业量表在台湾教育研究中的适用性:本土化与国际化的考虑》。《教育科学研究期刊》,54(3),1-27。 [501]黄毅志、侯松茂、巫有镒(2005)《台东县教育长期数据库之建立——国中小学生学习状况与心理健康追踪调查》。台东县政府委托专题研究结案报告。 [502]杨莹(1994)《教育机会均等——教育社会学的探究》。台北:师大书苑。 [503]萧新煌(1989)《台湾中产阶级何来何去》。收录于《变迁中台湾社会的中产阶级》(页5-17)。台北:巨流图书公司。 [504]瞿海源(1985a)《台湾地区职业地位主观测量之研究》,收录于《第四次社会科学研讨会论文集》(页121-140)。台北:中央研究院三民主义研究所。 [505]瞿海源(1985b)《文化建设与文化中心绩效评估之研究》。台北:行政院研究发展考核委员会。 [506]瞿海源(主编)(1998)《台湾地区社会变迁基本调查计划第三期第三次调查计划执行报告》。台北:中央研究院社会学研究所筹备处。 [507]Blau,Peter M.,& Duncan,Otis Dudley(1967). The American occupation structure.New York:Wiley. [508]Bourdieu,Pierre(1984). Distinction:A social critique of the judgment of taste.Cambridge,MA:Harvard University Press. [509]Carmines,Edward G.,& Zeller,Richard A.(1979). Reliability and validity assessment.Beverly Hills,CA:Sage. [510]Chan,Tak-wing,& Goldthorpe,John H.(2007). Social status and newspaper readership. American Journal of Sociology,112(4),1095-1134. [511]Duncan,Otis Dudley(1961). A socioeconomic index for all occupational. In Albert J.Reiss(Eds.),Occupations and Social Status (pp. 109-138). New York:Free Press. [512]Ganzeboom,Harry B. G.,& Treiman,Donald J.(1996). Internationally comparable measures of occupational status for the 1988 international standard classification of occupations. Social Science Research,25,201-239. [513]Grichting,Wolfgang L.(1971). Occupational prestige structure in Taiwan. National Taiwan University Journal of Sociology,7,67-78. [514]Hauser,Robert M.,& Featherman,David L.(1977). The process of stratification:Trends and analyses. New York:Academic Press. [515]Hauser,Robert M.,& Warren,John Robert(1997). Socioeconomic indexes for occupations status:A review,update,and critique. Sociological Methodology,27,177-298. [516]Hollingshed,August B.(1958). Social class and mental illness:A community study.New York:Wiley. [517]Jencks,Christopher(1990). What is true rate of social mobility? In Ronald L. Breiger(Ed.),Social mobility and social structure (pp. 103-130). Cambridge University Press. [518]Kohn,Melvin L.(1969). Class and conformity:A study in values. Homewood,IL:Dorsey Press. [519]Lin,Nan(2001). Social capital. Cambridge:Cambridge University Press. [520]Nakao,Keiko,& Treas,Judith(1994). Updating occupational prestige and socioeconomic scores. In Peter V. Marsden(Ed.),Sociological methodology (pp. 1-72). Cambridge Black Well Publishers. [521]Treiman,Donald J.(1977). Occupational prestige in comparative perspective. New York:Academic Press. [522]Tsai,Shu-ling,& Chiu,Hei-yuan(1991). Constructing occupational scales for Taiwan.In Robert Althauser & Michael Wallace(Eds.),Social Stratification and Mobility(Vol. 10,pp. 29-253). Greenwich,Connecticut:JAI Press. [523]Wonnacott,Ronald J.,& Wonnacott,Thomas H.(1979). Econometrics. [524]Wright,Erik Olin(1979). Class structure and income determination. New York:Academic Press.
[展开]

相关推荐

发表评论

同步转发到先晓茶馆

发表评论

手机可扫码阅读