报告

城市计算研究前沿:理论、方法与实践

摘要

作为一个新兴且非常重要的交叉领域,城市计算是计算机学科与传统学科在城市空间的交叉领域。它以时空数据的管理、挖掘和可视化为核心技术,应用于各种城市场景。在本文中,我们首先总结了城市计算的概念和基本框架。而后,从轨迹数据的推导、轨迹数据感知,到轨迹数据管理,再到各种人工智能,最后到数据可视化,本文探索了这些现有技术之间的联系、相关性和差异。本文还介绍了近期城市计算在城市规划、智能交通、城市环境、城市能源、社会与娱乐、城市经济、城市安全和应急响应方面的发展情况。

作者

任慧敏 ,美国伍斯特理工学院数据科学在读博士,京东智能城市研究院实习生,研究领域为城市计算、时空数据挖掘领域的智能应用。
何天赋 ,哈尔滨工业大学计算机科学与技术专业在读博士,研究领域为城市计算、时空数据挖掘、出行轨迹数据挖掘。
何华均 ,西南交通大学在读博士、京东科技集团算法工程师,研究领域为城市计算、时空数据管理。
鲍捷 ,博士,现为京东科技集团智能城市事业群数据产品部门负责人,研究领域为城市计算、时空数据管理。
郑宇 ,京东集团副总裁,IEEE Fellow(IEEE会士)。
Ren Huimin
He Tianfu
He Huajun
Bao Jie
Zheng Yu

参考文献 查看全部 ↓
  • [1]Jie Bao,Tianfu He,Sijie Ruan,Yanhua Li,and Yu Zheng. Planning Bike Lanes Based on Sharing-bikes’ Trajectories. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,pp.1377- 1386,2017.
  • [2]Zikun Deng,Di Weng,Jiahui Chen,Ren Liu,Zhibin Wang,Jie Bao,Yu Zheng,and Yingcai Wu. Airvis:Visual Analytics of Air Pollution Propagation. IEEE Transactions on Visualization and Computer Graphics,26(1):800-810,2019.
  • [3]Zikun Deng,Di Weng,Yuxuan Liang,Jie Bao,Yu Zheng,Tobias Schreck,Min-gliang Xu,and Yingcai Wu. Visual Cascade Analytics of Large-scale Spatiotemporal Data. IEEE Transactions on Visualization and Computer Graphics,2021.
  • [4]Huajun He,Ruiyuan Li,Rubin Wang,Jie Bao,Yu Zheng,and Tianrui Li. Efficient Suspected Infected Crowds Detection Based on Spatio-Temporal Trajectories. arXiv preprint arXiv:2004.06653,2020.
  • [5]Tianfu He,Jie Bao,Ruiyuan Li,Sijie Ruan,Yanhua Li,Li Song,Hui He,and Yu Zheng. What is the Human Mobility in a New City:Transfer Mobility Knowledge Across Cities. In Proceedings of The Web Conference 2020,pp.1355-1365,2020.
  • [6]Tianfu He,Jie Bao,Sijie Ruan,Ruiyuan Li,Yanhua Li,Hui He,and Yu Zheng. Interactive Bike Lane Planning Using Sharing. Bikes’ Trajectories. IEEE Transactions on Knowledge and Data Engineering,32(8):1529-1542,2019.
  • [7]Minh X Hoang,Yu Zheng,and Ambuj K Singh. Fccf:Forecasting Citywide Crowd Flows Based on Big Data. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,pp.1-10,2016.
  • [8]Hsun-Ping Hsieh,Shou-De Lin,and Yu Zheng. Inferring Air Quality for Station Location Recommendation Based on Urban Big Data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,KDD ’15,pp.437-446,New York,NY,USA,2015. Association for Computing Machinery.
  • [9]Chao Huang,Junbo Zhang,Yu Zheng,and Nitesh V Chawla. Deepcrime:Attentive hierarchical Recurrent Networks for Crime Prediction. In Proceedings of the 27th ACM International Conference on Information and Knowledge Man-agement,pp.1423-1432,2018.
  • [10]Shenggong Ji,Yu Zheng,and Tianrui Li. Urban Sensing Based on Human mobility. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing,UbiComp ’16,pp.1040-1051,New York,NY,USA,2016. Association for Computing Machinery.
  • [11]Ruiyuan Li,Jie Bao,Huajun He,Sijie Ruan,Tianfu He,Liang Hong,Zhongyuan Jiang,and Yu Zheng. Discovering Real-time Reachable Area Using Trajectory connections. In International Conference on Database Systems for Advanced Applications,pp.36-53. Springer,2020.
  • [12]Ruiyuan Li,Huajun He,Rubin Wang,Yuchuan Huang,Junwen Liu,Sijie Ruan,Tianfu He,Jie Bao,and Yu Zheng. Just:Jd Urban Spatio-temporal Data Engine. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),pp.1558-1569. IEEE,2020.
  • [13]Yexin Li,Yu Zheng,and Qiang Yang. Efficient and Effective Express via Con-textual Cooperative Reinforcement Learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,pp.510-519,2019.
  • [14]Yuhong Li,Jie Bao,Yanhua Li,Yingcai Wu,Zhiguo Gong,and Yu Zheng. Mining the Most Influential K-location Set From Massive Trajectories. IEEE Transactions on Big Data,4(4):556-570,2017.
  • [15]Yuhong Li,Jie Bao,Yanhua Li,Yingcai Wu,Zhiguo Gong,and Yu Zheng. Mining the Most Influential K-location Set From Massive Trajectories. IEEE Transactions on Big Data,4(4):556-570,2018.
  • [16]Dongyu Liu,Di Weng,Yuhong Li,Jie Bao,Yu Zheng,Huamin Qu,and Yingcai Wu. Smartadp:Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations. IEEE Transactions on Visualization and Computer Graphics,23(1):1-10,2016.
  • [17]Hechen Liu,Ling-Yin Wei,Yu Zheng,Markus Schneider,and Wen-Chih Peng. Route Discovery From Mining Uncertain Trajectories. In 2011 IEEE 11th International Conference on Data Mining Workshops,pp.1239-1242. IEEE,2011.
  • [18]Ye Liu,Yu Zheng,Yuxuan Liang,Shuming Liu,and David S Rosenblum. Urban Water Quality Prediction Based on Multi-task Multi-view Learning. 2016.
  • [19]Chuishi Meng,Xiuwen Yi,Lu Su,Jing Gao,and Yu Zheng. City-wide Traffic Volume Inference with Loop Detector Data and Taxi Trajectories. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,pp.1-10,2017.
  • [20]Paul Newson and John Krumm. Hidden Markov Map Matching Through Noise and Sparseness. In Proc. of the 17th ACM SIGSPATIAL,pp.336-343,2009.
  • [21]Arthur O’sullivan.Urban economics,volume 3. Irwin Chicago,1996.
  • [22]Menghai Pan,Weixiao Huang,Yanhua Li,Xun Zhou,Zhenming Liu,Jie Bao,Yu Zheng,and Jun Luo. Is Reinforcement Learning the Choice of Human Learners?A case Study of Taxi Drivers. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems,pp.357-366,2020.
  • [23]Zheyi Pan,Yuxuan Liang,Weifeng Wang,Yong Yu,Yu Zheng,and Junbo Zhang. Urban Traffic Prediction From Spatio-temporal Data Using Deep Meta Learning. In Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery & Data Mining,pp.1720-1730,2019.
  • [24]Huiling Qin,Songyu Ke,Xiaodu Yang,Haoran Xu,Xianyuan Zhan,and Yu Zheng. Robust Spatio-temporal Purchase Prediction via Deep Meta Learning. Proceedings of the AAAI Conference on Artificial Intelligence,35(5):4312-4319,May 2021.
  • [25]Huiling Qin,Songyu Ke,Xiaodu Yang,Haoran Xu,Xianyuan Zhan,and Yu Zheng. Robust Spatio-temporal Purchase Prediction via Deep Meta Learning. In Proceedings of the AAAI Conference on Artificial Intelligence,volume 35,pp.4312-4319,2021.
  • [26]John Schulman,Filip Wolski,Prafulla Dhariwal,Alec Radford,and Oleg Klimov. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347,2017.
  • [27]Jingbo Shang,Yu Zheng,Wenzhu Tong,Eric Chang,and Yong Yu. Inferring Gas Consumption and Pollution Emission of Vehicles Throughout a City. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,pp.1027-1036,2014.
  • [28]David Silver,Guy Lever,Nicolas Heess,Thomas Degris,Daan Wierstra,and Martin Riedmiller. Deterministic Policy Gradient Algorithms. In International Conference on Machine Learning,pp.387-395. PMLR,2014.
  • [29]Junkai Sun,Junbo Zhang,Qiaofei Li,Xiuwen Yi,Yuxuan Liang,and Yu Zheng. Predicting Citywide Crowd Flows in Irregular Regions Using Multi-view Graph Con-Volutional Networks. IEEE Transactions on Knowledge and Data Engineering,2020.
  • [30]Richard S Sutton and Andrew G.Barto.Reinforcement Learning:An Introduction. MIT Pess,2018.
  • [31]Hado Van Hasselt,Arthur Guez,and David Silver. Deep Reinforcement Learning with Double Q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence,volume 30,2016.
  • [32]Qianru Wang,Junbo Zhang,Bin Guo,Zexia Hao,Yifang Zhou,Junkai Sun,Zhiwen Yu,and Yu Zheng. Cityguard:Citywide Fire Risk Forecasting Using a Machine Learning Approach. Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,3(4):1-21,2019.
  • [33]Zhaoyuan Wang,Junbo Zhang,Shenggong Ji,Chuishi Meng,Tianrui Li,and Yu Zheng. Predicting and Ranking Box Office Revenue of Movies Based on Big data. Information Fusion,60:25-40,2020.
  • [34]Di Weng,Chengbo Zheng,Zikun Deng,Mingze Ma,Jie Bao,Yu Zheng,Mingliang Xu,and Yingcai Wu. Towards Better Bus Networks:A Visual Analytics Approach. IEEE Transactions on Visualization and Computer Graphics,27(2):817-827,2020.
  • [35]Xiangye Xiao,Yu Zheng,Qiong Luo,and Xing Xie. Inferring Social Ties Between Users with Human Location History. Journal of Ambient Intelligence and Humanized Computing,5(1):3-19,2014.
  • [36]Yang Ye,Yu Zheng,Yukun Chen,Jianhua Feng,and Xing Xie. Mining Individual Life Pattern Based on Iocation History. In 2009 Tenth International Conference on Mobile Data Management:Systems,Services and Middleware,pp.1-10. IEEE,2009.
  • [37]Xiuwen Yi,Zhewen Duan,Ruiyuan Li,Junbo Zhang,Tianrui Li,and Yu Zheng. Predicting Fine-grained Air Quality Based on Deep Neural Networks. IEEE Transactions on Big Data,2020.
  • [38]Xiuwen Yi,Yu Zheng,Junbo Zhang,and Tianrui Li. St-mvl:Filling Missing Values in geosensory Time Series Data. 2016.
  • [39]Xianyuan Zhan,Haoran Xu,Yue Zhang,Yusen Huo,Xiangyu Zhu,Hon-glei Yin,and Yu Zheng. Deepthermal:Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning. arXiv preprint arXiv:2102.11492,2021.
  • [40]Junbo Zhang,Yu Zheng,and Dekang Qi. Deep Spatio-temporal Residual Net Works for Citywide Crowd Flows Prediction. In Thirty-first AAAI Conference on Artificial Intelligence,2017.
  • [41]Junbo Zhang,Yu Zheng,Junkai Sun,and Dekang Qi. Flow Prediction in Spatio-temporal Networks Based on Multitask Deep Learning. IEEE Transactions on Knowledge and Data Engineering,32(3):468-478,2019.
  • [42]Xiyue Zhang,Chao Huang,Yong Xu,Lianghao Xia,Peng Dai,Liefeng Bo,Junbo Zhang,and Yu Zheng. Traffic Flow Forecasting with Spatial-temporal Graph Diffusion Network. 2020.
  • [43]Vincent W Zheng,Yu Zheng,Xing Xie,and Qiang Yang. Collaborative Location and Activity Recommendations with Gps History Data. In Proceedings of the 19th International Conference on World Wide Web,pp.1029-1038,2010.
  • [44]Yu Zheng. Trajectory Data Mining:An Overview. ACM Transactions on Intelligent Systems and Technology (TIST),6(3):1-41,2015.
  • [45]Yu Zheng,Licia Capra,Ouri Wolfson,and Hai Yang. Urban Computing:Concepts,Methodologies,and Applications. 5(3),September 2014.
  • [46]Yu Zheng,Licia Capra,Ouri Wolfson,and Hai Yang. Urban Computing:Concepts,Methodologies,and Applications. ACM Transactions on Intelligent Systems and Technology (TIST),5(3):1-55,2014.
  • [47]Yu Zheng,Furui Liu,and Hsun-Ping Hsieh. U-air:When Urban Air Quality Inference Meets Big Data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,pp.1436-1444,2013.
  • [48]Yu Zheng,Tong Liu,Yilun Wang,Yanmin Zhu,Yanchi Liu,and Eric Chang. Di-agnosing New York City’s Noises with Ubiquitous Data. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing,pp.715-725,2014.
  • [49]郑宇:《城市计算概述》,《武汉大学学报》(信息科学版)2015年第1期。
  • [50]郑宇:《城市计算:用大数据和AI驱动智能城市》,《中国计算机学会通讯》2018年第14期。

城市计算研究前沿:理论、方法与实践

可试读20%内容 PDF阅读 阅读器阅览

试读已结束,剩余80%未读

¥12.03 查看全文 >

VIP免费

报告目录

  • 一 城市计算的概念和基本框架
    1. (一)城市计算的概念
    2. (二)城市计算的基本框架
    3. (三)城市计算的核心问题
  • 二 城市计算的主要技术
    1. (一)城市感知技术
      1. 1.感知模式
      2. 2.新挑战与解决方案
    2. (二)城市数据管理技术
      1. 1.城市数据存储
      2. 2.城市数据查询
      3. 3.城市数据安全
    3. (三)时空AI技术
      1. 1.针对时空数据的传统机器学习算法
      2. 2.针对时空数据的深度学习算法
      3. 3.针对时空数据的强化学习算法
    4. (四)城市服务提供
      1. 1.混合数据的可视化技术
      2. 2.系统整合
      3. 3.数据科学家培养
  • 三 城市计算的新型应用
    1. (一)城市规划
    2. (二)智能交通
    3. (三)城市环境
      1. 1.城市空气
      2. 2.城市噪声
      3. 3.城市水质
    4. (四)城市能源
    5. (五)社交与娱乐
    6. (六)城市经济
    7. (七)城市安全和应急响应
  • 四 结语

报告图片/图表

查看更多>>>