章节

量子计算前沿分析与技术前瞻

摘要

量子计算是基于量子力学的全新计算模式,具有原理上远超经典计算的强大并行计算能力。当前,研制量子计算机已成为世界科技前沿的最大挑战之一,国际上正在对各种有望实现可扩展量子计算的物理体系开展系统性研究。我国已完成所有重要量子计算体系的研究布局,在若干物理体系达到“量子计算优越性”这一里程碑,牢固确立了国际第一方阵地位。通过10年左右的努力,有望有效解决大尺度量子系统的效率问题,构建可扩展的量子相干网络,研制对特定问题的求解能力全面超越经典超级计算机的专用量子计算和模拟机,并为最终实现通用量子计算机探索出一条切实可行的道路。

作者

陆朝阳 ,博士,现任中国科学技术大学教授,博士生导师,研究方向包括量子计算、固态量子光学、量子力学基础。
朱晓波 ,博士,现任中国科学技术大学教授,博士生导师,研究方向包括超导量子计算。
陈宇翱 ,博士,现任中国科学技术大学教授,博士生导师,研究方向包括量子力学基础、量子光学、量子信息。
段路明 ,博士,现任清华大学基础科学讲席教授、姚期智讲座教授,研究方向包括量子信息、量子光学。
潘建伟 ,博士,现任中国科学技术大学教授,中国科学院院士,博士生导师,研究方向包括量子力学基础、量子光学、量子信息。

参考文献 查看全部 ↓
  • Bradley,C.et al.,“A ten-qubit solid-state spin register with quantum memory up to one minute”,Physical Review X,9,031045 (2019).
  • B.-W.Li,et al.,“Observation of non-markovian spin dynamics in a jaynes-cummings-hubbard model using a trapped-ion quantum simulator”,Physical Review Letters,129,140501 (2022).
  • B.Yang,H.Sun,C.J.Huang,H.Y.Wang,Y.J.Deng,H.N.Dai,Z.S.Yuan and J.W.Pan,“Cooling and entangling ultracold atoms in optical lattices”,Science,369,550 (2020).
  • Deng S.,Shi Z.Y.,Diao P.,et al.,“Observation of the efimovian expansion in scale-invariant Fermi gases”,Science,353,371 (2016).
  • E.Parker,D.Gonzales,A.K.Kochhar,et al.,“An assessment of the U.S. and Chinese industrial bases in quantum technology”,Rand National Defense Research Inst Santa MonicaCA,(2022).
  • F.Arute,K.Arya,R.Babbush,et al.,“Quantum supremacy using a programmable superconducting processor”,Nature,574,7779,505 (2019).
  • F.Pan,K.Chen,P.Zhang.,“Solving the sampling problem of the sycamore quantum circuits”,Physical Review Letters,129,090502 (2022).
  • G.Semeghini et al.,“Probing topological spin liquids on a programmable quantum simulator”,Science,374,1242 (2021).
  • H.-S.Zhong,H.Wang,Y.-H.Deng,et al.,“Quantum computational advantage using photons”,Science,370,1460 (2020).
  • H.-S.Zhong,Y.-H.Deng,J.Qin,H.Wang,et al.,“Phase-programmable gaussian boson sampling using stimulated squeezed light”,Physical Review Letters,127,180502 (2021).
  • H.-X.Yang et al.,“Realizing coherently convertible dual-type qubits with the same ion species”,Nature Physics,18,1058 (2022).
  • H.N.Dai,B.Yang,A.Reingruber,H.Sun,X.F.Xu,Y.A.Chen,Z.S.Yuan and J.W.Pan.,“Generation and detection of atomic spin entanglement in optical lattices”,Nature Physics,13,1195 (2017).
  • H.Yang,D.-C.Zhang,L.Liu,Y.-X.Liu,J.Nan,B.Zhao,and J.-W.Pan,“Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K+40K collisions”,Science,363,261 (2019).
  • H.Yang,J.Cao,Z.Su,J.Rui,B.Zhao,J.-W.Pan,“Creation of an ultracold gas of triatomic molecules from an atom-diatomic molecule mixture”,Science,378,1009 (2022).
  • H.Yang,X.-Y.Wang,Z.Su,J.Cao,D.-C.Zhang,J.Rui,B.Zhao,C.-L.Bai,J.-W.Pan.,“Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures”,Nature,602,229 (2022).
  • Li M,Li G,Cao L,et al.,“Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs”,Nature,606,890 (2022).
  • L.Huang,Z.Meng,P.Wang,P.Peng,S.Zhang,L.Chen,D.Li,Q.Zhou and J.Zhang,“Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases”,Nature Physics,12,540 (2016).
  • L.S.Madsen,F.Laudenbach,M.F.Askarani,et al.,“Quantum computational advantage with a programmable photonic processor”,Nature,606,75 (2022).
  • M.Gong,S.Wang,C.Zha,M.-C.Chen,et al.,“Quantum walks on a programmable two-dimensional 62-qubit superconducting processor”,Science,372,948 (2021).
  • M.Kim,K.Kim,J.Hwang et al.,“Rydberg quantum wires for maximum independent set problems with nonplanar and high-degree graphs”,arXiv:2109.03517 (2021).
  • M.Li,G.Li,L.Cao,X.Zhou,et al.,“Ordered and tunable majorana-zero-mode lattice in naturally strained lifeas”,Nature,606,890 (2022).
  • M.Wang,H.Sun,X.Ye,P.Yu,H.Liu,et al.,“Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision”,Science Advances,8,38,eabn9573 (2022).
  • N.Maskara,A.A.Michailidis,W.W.Ho,“Discrete time-crystalline order enabled by quantum many-body scars:entanglement steering via periodic driving”,Physical Review Letters,127,090602 (2021).
  • P.Scholl,M.Schuler,H.J.Williams et al.,“Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms”,Nature,595,233 (2021).
  • P.Wang,Z.Yu,Z.Fu,J.Miao,H.Huang,J.Chai,H.Zhai and J.Zhang,“Spin-orbit coupled degenerate fermi gases”,Physical Review Letters,109,095301 (2012).
  • Q.-X.Mei et al.,“Experimental realization of the rabi-hubbard model with trapped ions”,Physical Review Letters,128,160504 (2022).
  • Q.Zhang,Y.Guo,W.Ji,M.Wang,et al.,“High-fidelity singleshot readout of single electron spin in diamond with spin-to-charge conversion”,Nature Communications,12,1529 (2021).
  • Shor P W.,“Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”,Siam Review,41,303 (1999).
  • S.Ebadi,T.T.Wang,H.Levine et al.,“Quantum phases of matter ona 256-Atom Programmable Quantum Simulator”,Nature,595,227 (2021).
  • S.Zhu,L.Kong,L.Cao,H.Chen,et al.,“Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor”,Science,367,6474,189 (2020).
  • Wang D,Kong L,Fan P,et al.,“Evidence for majorana bound states in an iron-based superconductor”,Science,362,333 (2018).
  • Wang Z,Song H,Pan D,et al.,“Plateau regions for zero-bias peaks within 5% of the quantized conductance value 2e2/h”,Physical Review Letters,129,167702 (2022).
  • X.-Q.Wang,G.-Q.Luo,J.-Y.Liu et al.,“Evidence for an atomic chiral superfluid with topological excitations”,Nature,596,227 (2021).
  • X.C.Yao,R.Qi,X.P.Liu,X.Q.Wang,Y.X.Wang,Y.P.Wu,H.Z.Chen,P.Zhang,H.Zhai,Y.A.Chen and J.W.Pan,“Degenerate bose gases near a d-wave shape resonance”,Nature Physics,15,570-576 (2019).
  • X.Li,X.Luo,S.Wang,K.Xie,X.-P.Liu,H.Hu,Y.-A.Chen,X.-C.Yao,J.-W.Pan,“Second sound attenuation near quantum criticality”,Science,375,528(2022).
  • X.Zhang,W.Jiang,J.Deng,K.Wang,et al.,“Digital quantum simulation of floquet symmetry-protected topological phases”,Nature,607,468 (2022).
  • Y.Cui,C.Shen,M.Deng et al.,“Observation of broad d-wave feshbach resonances with a triplet structure”,Physical Review Letters,119,203402 (2017).
  • Y.Wu,W.-S.Bao,S.Cao,F.Chen,M.-C.Chen,et al.,“Strong quantum computational advantage using a superconducting quantum processor”,Physical Review Letters,127,180501 (2021).
  • Y.Wu,W.Liu,J.Geng,X.Song,X.Ye,C.-K.Duan,X.Rong,J.Du,“Observation of parity-time symmetry breaking in a single-spin system”,Science,364,6443,878 (2019).
  • Zhang X,Chen Y,Wu Z,et al.,“Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas”,Science,373,1359 (2021).
  • Z.-Y.Wang,X.-C.Cheng,B.-Z.Wang,et al.,“Realization of an ideal Weyl semimetal band in a quantum gas with 3D Spin-Orbit coupling”,Science,372,271 (2021).
  • Z.Meng,L.Wang,W.Han,F.Liu,K.Wen,C.Gao,P.Wang,C.Chin,J.Zhang,“Atomic bose-einstein condensate in twisted-bilayer optical lattices”,Nature,231 (2023).
  • Z.Ni,S.Li,X.Deng,Y.Cai,L.Zhang,et al.,“Beating the break-even point with a discrete-variable-encoded logical qubit”,Nature,616,56 (2023).
  • Z.Wu,L.Zhang,W.Sun,X.-T.Xu,B.-Z.Wang,et al.,“Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates”,Science,354,83 (2016).
  • Z.Wu,L.Zhang,W.Sun,X.T.Xu,B.Z.Wang,S.C.Ji,Y.J.Deng,S.Chen,X.J.Liu,J.W.Pan,“Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates”,Science,354,83-88 (2016).

量子计算前沿分析与技术前瞻

可试读20%内容 PDF阅读 阅读器阅览

试读已结束,剩余80%未读

¥8.21 查看全文 >

VIP免费

章节目录

  • 一 量子计算简介
  • 二 量子计算的发展阶段
  • 三 我国量子计算发展现状
    1. (一)光量子计算
    2. (二)超导量子计算
    3. (三)超冷原子量子模拟
    4. (四)其他体系的量子计算与模拟
  • 四 与主要国家和地区的对比情况
    1. (一)光量子计算方面
    2. (二)超导量子计算
    3. (三)超冷原子量子模拟
    4. (四)其他体系的量子计算与模拟
  • 五 我国量子计算发展面临的主要挑战
    1. (一)创新体系化能力有待提升
    2. (二)企业的创新活力尚需进一步提升
  • 六 推动我国量子计算发展的若干建议
    1. (一)形成量子计算相关核心材料、器件与设备的体系化自主研制能力
    2. (二)完善科技金融体系,引导量子计算研发和产业发展
    3. (三)加强国际合作与交流
    4. (四)加强人才培养和队伍建设
    5. (五)推动量子计算标准化的布局
  • 七 下一步发展重点任务
    1. 1.实现量子纠错
    2. 2.专用量子计算与模拟机的研制
    3. 3.通用量子计算机研究
    4. 4.多学科融合支撑量子计算系统集成与应用研究

查看更多>>>