章节

基于容量增量特性的锂离子电池健康状态诊断与安全预警策略研究

关键词

作者

参考文献 查看全部 ↓
  • JI B,SONG X G,CAO W P,et al. Active temperature control of Li-ion batteries in electric vehicles[C]//Hybrid & Electric Vehicles Conference. IET,2013.
  • ANGELES CABAÑERO M,ALTMANN J,GOLD L,et al. Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries[J]. Energy,2019,171:1217-1228.
  • JIANG J,GAO Y,ZHANG C,et al. Lifetime Rapid Evaluation Method for Lithium-Ion Battery with Li(NiMnCo)O2 Cathode[J]. Journal of The Electrochemical Society,2019,166(6):A1070-A1081.
  • THOMAS E V,BLOOM I,CHRISTOPHERSEN J P,et al. Rate-based degradation modeling of lithium-ion cells[J]. Journal of Power Sources,2012,206:378-382.
  • BIRKL C R,ROBERTS M R,MCTURK E,et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources,2017,341:373-386.
  • LI Y,LIU K,FOLEY A M,et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable and Sustainable Energy Reviews,2019,113:109254.
  • ITURRONDOBEITIA A,AGUESSE F,GENIES S,et al. Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application[J]. The Journal of Physical Chemistry C,2017,121(40):21865-21876.
  • RAHE C,KELLY S T,RAD M N,et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources,2019,433.
  • RAUHALA T,JALKANEN K,ROMANN T,et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile-A post-mortem study[J]. Journal of Energy Storage,2018,20:344-356.
  • 王天鸶. 锂离子电池容量损失预测及健康状态估计研究[D]. 哈尔滨工业大学,2016.
  • DOYLE M. Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells[J]. Journal of The Electrochemical Society,1996,143(6):1890.
  • LI J,ADEWUYI K,LOTFI N,et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy,2018,212:1178-1190.
  • RAHIMIAN S K,RAYMAN S,WHITE R E. Comparison of single particle and equivalent circuit analog models for a lithium-ion cell[J]. Journal of Power Sources,2011,196(20):8450-8462.
  • SUBRAMANIAN V R,BOOVARAGAVAN V,RAMADESIGAN V,et al. Mathematical Model Reformulation for Lithium-Ion Battery Simulations:Galvanostatic Boundary Conditions[J]. Journal of The Electrochemical Society,2009,156(4):A260-A271.
  • 姜久春,马泽宇,李雪,等. 基于开路电压特性的动力电池健康状态诊断与估计[J]. 北京交通大学学报,2016,40(04):92-98.
  • DUBARRY M,TRUCHOT C,LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources,2012,219:204-216.
  • ANSEÁN D,DUBARRY M,DEVIE A,et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources,2017,356:36-46.
  • ALAVI S M M,SAMADI M F,SAIF M. Plating Mechanism Detection in Lithium-ion batteries,by using a particle-filtering based estimation technique[C]. American Control Conference. IEEE,2013.
  • FENG X,WENG C,OUYANG M,et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy,2016,161:168-180.
  • SEO M,GOH T,PARK M,et al. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method[J]. Energies,2017,10(1):76.
  • ZHANG H,PEI L,SUN J,et al. Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group[J]. Energies,2016,9(5):387.
  • XIA B,SHANG Y,NGUYEN T,et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources,2017,337:1-10.
  • KONG X,ZHENG Y,OUYANG M,et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources,2018,395:358-368.
  • NAHA A,KHANDELWAL A,HARIHARAN K S,et al. On-Board Short-Circuit Detection of Li-ion Batteries Undergoing Fixed Charging Profile as in Smartphone Applications[J]. IEEE Transactions on Industrial Electronics,2019,66(11):8782-8791.
  • WANG Z,HONG J,LIU P,et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy,2017,196:289-302.
  • HONG J,WANG Z,YAO Y. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy,2019,251:113381.
  • GAO Y,JIANG J,ZHANG C,et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of Power Sources,2018,400:641-651.

基于容量增量特性的锂离子电池健康状态诊断与安全预警策略研究

可试读20%内容 PDF阅读 阅读器阅览

试读已结束,剩余80%未读

¥25.65 查看全文 >

VIP免费

章节目录

  • 一 引言
    1. (一)电池健康状态评估研究现状
    2. (二)电池安全预警策略研究现状
    3. (三)本文的主要研究内容
  • 二 磷酸铁锂电池健康状态诊断
    1. (一)容量增量分析法
    2. (二)实验设计
    3. (三)测试结果分析
    4. (四)容量增量曲线变化规律
    5. (五)不同老化模式对容量增量曲线的影响
    6. (六)电池老化机理分析及老化差异性比较
    7. (七)小结
  • 三 三元电池健康状态诊断
    1. (一)三元电池容量增量曲线
    2. (二)实验设计
    3. (三)测试结果分析
    4. (四)不同循环温度下锂离子电池的容量跳水机制
    5. (五)不同电流倍率下锂离子电池的容量跳水机制
    6. (六)小结
  • 四 锂离子电池安全预警策略
    1. (一)基于离群点检测的安全预警方法
    2. (二)基于老化机制分析的电池容量跳水识别方法
    3. (三)小结
  • 五 总结与展望

章节图片/图表

查看更多>>>