章节

中国主要粮食作物遥感监测

摘要

粮食安全是“国之大者”,是经济发展、社会稳定、国家安全的重要保障。病虫害是威胁粮食安全的重要因素,年均造成全球粮食歉收40%、我国粮食损失300亿~500亿斤。本报告融合国内外GF系列、Landsat系列、Sentinel 系列等卫星遥感数据、气象数据、区划数据、地面调查数据等多源数据,实现了2022年全国小麦、水稻、玉米的种植面积提取、长势状况监测、主要病虫害生境适宜性分析和作物产量估算。研究结果表明:①2022年全国水稻、玉米整体生长状况良好,与2021年相比总体长势持平,西北麦区小麦生长状况略差,但与2021年相比偏好;②2022年全国适宜小麦条锈病、赤霉病和蚜虫传播扩散的面积约1.6亿亩,适宜水稻稻飞虱、稻纵卷叶螟、稻瘟病传播扩散的面积约1.6亿亩,适宜玉米粘虫、大斑病传播扩散的面积约7106万亩;③2022年全国小麦总产量约1.3亿吨,水稻总产量约2.1亿吨,玉米总产量约2.6亿吨。

作者

参考文献 查看全部 ↓
  • [1]Abubakar G A,Wang K,Shahtahamssebi A R,et al. “Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi,Northern Nigeria,Africa”. Sustainability,2020,12(6):2539.
  • [2]De Groote H,Kimenju S C,Munyua B,et al. “Spread and Impact of Fall ArmyWorm (Spodoptera Frugiperda JE Smith) in Maize Production Areas of Kenya”. Agriculture,Ecosystems & Environment,2020,292:106804.
  • [3]DeChant C,Wiesner-Hanks T,Chen S,et al. “Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning”. Phytopathology,2017,107(11):1426-1432.
  • [4]Du X,Li Q,Shang J,et al. “Detecting Advanced Stages of Winter Wheat Yellow Rust and Aphid Infection Using RapidEye Data in North China Plain”. GIScience & Remote Sensing,2019,56(7):1093-1113.
  • [5]Guo A,Huang W,Ye H,et al. “Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images”. Remote Sensing,2020,12(9):1419.
  • [6]Habibie M I,Noguchi R,Shusuke M,et al. “Land Suitability Analysis for Maize Production in Indonesia Using Satellite Remote Sensing and GIS-Based Multicriteria Decision Support System”. GeoJournal,2021,86(2):777-807.
  • [7]Han J,Zhang Z,Cao J,et al. “Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine learning in China”. Remote Sensing,2020,12(2):236.
  • [8]Ishengoma F S,Rai I A,Said R N. “Identification of Maize Leaves Infected by Fall Armyworms Using UAV-Based Imagery and Convolutional Neural Networks”. Computers and Electronics in Agriculture,2021,184:106124.
  • [9]Jin Z,Azzari G,You C,et al. “Smallholder Maize Area and Yield Mapping at National Scales with Google Earth Engine”. Remote Sensing of Environment,2019,228:115-128.
  • [10]Leroux L,Castets M,Baron C,et al. “Maize Yield Estimation in West Africa from Crop Process-Induced Combinations of Multi-Domain Remote Sensing Indices”. European Journal of Agronomy,2019,108:11-26.
  • [11]Liu L,Dong Y,Huang W,et al. “A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery”. IEEE Access,2020,8:52181-52191.
  • [12]Ma H,Huang W,Jing Y,et al. “Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid of Winter Wheat Using Bi-temporal Landsat-8 Imagery”. Remote Sensing,2019,11(7):846.
  • [13]Mahlein A K,Alisaac E,Al Masri A,et al. “Comparison and Combination of Thermal,Fluorescence,and Hyperspectral Imaging for Monitoring Fusarium Head Blight of Wheat on Spikelet Scale”. Sensors,2019,19(10):2281.
  • [14]Mandal N,Adak S,Das D K,et al. “Characterization of Rice Blast Disease Using Greenness Index,Canopy Temperature and Vegetation Indices”. International Journal of Agriculture,Environment and Biotechnology,2022,15(1):81-89.
  • [15]Nettleton D F,Katsantonis D,Kalaitzidis A,et al. “Predicting Rice Blast Disease:Machine Learning Versus Process-Based Models”.BMC Bioinformatics,2019,20(1):1-16.
  • [16]Pagani V,Guarneri T,Busetto L,et al. “A High-Resolution,Integrated System for Rice Yield Forecasting at District Level”.. Agricultural Systems,2019,168:181-190.
  • [17]Paul G C,Saha S,Hembram T K. “Application of Phenology-Based Algorithm and Linear Regression Model for Estimating Rice Cultivated Areas and Yield Using Remote Sensing Data in Bansloi River Basin,Eastern India”. Remote Sensing Applications:Society and Environment,2020,19:100367.
  • [18]Skawsang S,Nagai M,K.Tripathi N,et al. “Predicting Rice Pest Population Occurrence with Satellite-derived Crop Phenology,Ground Meteorological Observation,and Machine Learning:A Case Study for the Central Plain of Thailand”. Applied Sciences,2019,9(22):4846.
  • [19]Stewart E L,Wiesner-Hanks T,Kaczmar N,et al. “Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning”. Remote Sensing,2019,11(19):2209.
  • [20]Su J,Yi D,Su B,et al. “Aerial Visual Perception in Smart Farming:Field Study of Wheat Yellow Rust Monitoring”. IEEE Transactions on Industrial Informatics,2020,17(3):2242-2249.
  • [21]Tian H,Qin Y,Niu Z,et al. “Summer Maize Mapping by Compositing Time Series Sentinel-1A Imagery Based on Crop Growth Cycles”. Journal of the Indian Society of Remote Sensing,2021,49(11):2863-2874.
  • [22]Wahab I,Hall O,Jirström M. “Remote Sensing of Yields:Application of Uav Imagery-Derived Ndvi for Estimating Maize Vigor and Yields in Complex Frming Systems in Sub-saharan Africa”. Drones,2018,2(3):28.
  • [23]Wang X,Huang J,Feng Q,et al. “Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches”. Remote Sensing,2020,12(11):1744.
  • [24]Xiao Y,Dong Y,Huang W,et al. “Regional Prediction of Fusarium Head Blight Occurrence in Wheat with Remote Sensing Based Susceptible-Exposed-Infectious-Removed Model”. International Journal of Applied Earth Observation and Geoinformation,2022,114:103043.
  • [25]Xiao Z,Yun-xuan B A O,Lin W,et al. “Hyperspectral Features of Rice Canopy and SPAD Values Estimation under the Stress of Rice Leaf Folder”. Chinese Journal of Agrometeorology,2020,41(03):173.
  • [26]Xu F,Li Z,Zhang S,et al. “Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province,China”. Remote Sensing,2020,12(12):2065.
  • [27]Yang Q,Shi L,Han J,et al. “Deep Convolutional Neural Networks for Rice Grain Yield Estimation at the Ripening Stage Using UAV-Based Remotely Sensed Images”. Field Crops Research,2019,235:142-153.
  • [28]Zhan P,Zhu W,Li N. “An Automated Rice Mapping Method Based on Flooding Signals in Synthetic Aperture Radar Time Series”. Remote Sensing of Environment,2021,252:112112.
  • [29]Zhang J,Huang Y,Yuan L,et al. “Using Satellite Multispectral Imagery for Damage Mapping of Armyworm (Spodoptera frugiperda) in Maize at a Regional Scale”. Pest Management Science,2016,72(2):335-348.
  • [30]Zhang M,Lin H,Wang G,et al. “Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area,China”. Remote Sensing,2018,10(11):1840.
  • [31]Zhang X,Liu J,Qin Z,et al. “Winter Wheat Identification by Integrating Spectral and Temporal Information Derived from Multi-Resolution Remote Sensing data”. Journal of Integrative Agriculture,2019,18(11):2628-2643.
  • [32]Zhang X,Wu B,Ponce-Campos G E,et al. “Mapping up-to-Date Paddy Rice Extent at 10 m Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images”. Remote Sensing,2018,10(8):1200.
  • [33]Zheng Q,Ye H,Huang W,et al. “Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale:A Case Study”. Remote Sensing,2021,13(2):278.
  • [34]Zhong L,Hu L,Zhou H,et al. “Deep Learning Based Winter Wheat Mapping Using Statistical Data as Ground References in Kansas and Northern Texas,US”. Remote Sensing of Environment,2019,233:111411.
  • [35]Zhou W,Liu Y,Ata-Ul-Karim S T,et al. “Integrating Climate and Satellite Remote Sensing Data for Predicting County-Level Wheat Yield in China Using Machine Learning Methods”. International Journal of Applied Earth Observation and Geoinformation,2022,111:102861.

中国主要粮食作物遥感监测

可试读20%内容 PDF阅读 阅读器阅览

试读已结束,剩余80%未读

¥6.13 查看全文 >

VIP免费

章节目录

  • 4.1 中国主要粮食作物种植区遥感监测
  • 4.2 中国主要粮食作物长势遥感监测
    1. 4.2.1 小麦长势对比分析
    2. 4.2.2 水稻长势对比分析
    3. 4.2.3 玉米长势对比分析
  • 4.3 粮食作物重大病虫害生境适宜性分析
    1. 4.3.1 小麦病虫害生境适宜性分析
    2. 4.3.2 水稻病虫害生境适宜性监测
    3. 4.3.3 玉米病虫害生境适宜性监测
  • 4.4 中国主要粮食作物产量遥感估测

章节图片/图表

查看更多>>>