首页 > 图书详情

基于模糊合作对策的虚拟企业收益分配策略 专著;商业经济学;企业管理;中国 VIP

售价:¥59.25 ¥79
0人在读 |
0 评分
丛书名:
于晓辉 张强   社会科学文献出版社  2018-08 出版
ISBN:978-7-5201-2736-3

*温馨提示:此类商品为数字类产品,不支持退换货,不支持下载打印

图书简介 目录 参考文献 音频 视频
全球市场中经济竞争的日益激烈迫使企业之间通过组建“虚拟企业”优化整合企业的外部资源。本书研究成员参与联盟程度模糊、未来合作的预期收益模糊以及成员参与联盟程度和未来合作的预期收益同时模糊三种不确定条件下的虚拟企业收益分配问题,即“具有模糊联盟的合作对策”、“具有模糊支付的合作对策”以及“具有模糊联盟和模糊支付的合作对策”在虚拟企业收益分配问题中的应用,具有重要的理论意义和实用价值。
[展开]
  • 文前辅文
  • 摘要
  • Abstract
  • 符号注释
  • 第一章 绪论
    1. 一 研究背景及意义
    2. 二 研究现状及分析
    3. 三 研究内容、创新点与结构
  • 第二章 模糊数学的基础理论
    1. 一 模糊集
    2. 二 区间数与模糊数
    3. 三 模糊测度、Choquet积分与不确定积分
    4. 四 小结
  • 第三章 基于经典合作对策理论的虚拟企业收益分配策略
    1. 一 经典合作对策的基础理论
    2. 二 虚拟企业的收益分配问题
    3. 三 基于经典合作对策的虚拟企业收益分配策略
    4. 四 小结
  • 第四章 基于模糊联盟合作对策的虚拟企业收益分配策略
    1. 一 模糊联盟合作对策
    2. 二 模糊联盟合作对策的Shapley值及其应用
    3. 三 模糊联盟合作对策的核心及其应用
    4. 四 小结
  • 第五章 基于模糊支付合作对策的虚拟企业收益分配策略
    1. 一 模糊支付合作对策的基本概念
    2. 二 基于扩张运算的模糊Shapley值及其应用
    3. 三 基于Hukuhara差的模糊Shapley值及其应用
    4. 四 模糊支付合作对策的M-核心与λ-核心及其应用
    5. 五 模糊最大序核心及其应用
    6. 六 小结
  • 第六章 基于具有模糊联盟和模糊支付的合作对策的虚拟企业收益分配策略
    1. 一 Borkotokey定义的模糊合作对策及其模糊Shapley值
    2. 二 广义模糊合作对策模型及其相关概念
    3. 三 广义Choquet积分模糊对策及其应用
    4. 四 小结
  • 第七章 多目标线性生产规划的模糊合作对策及其分配策略
    1. 一 多目标线性生产规划的合作对策
    2. 二 多目标线性生产规划的模糊联盟对策
    3. 三 多目标线性生产规划对策的收益分配策略
    4. 四 小结
[1][1]Von Neumann,J.,Morgenstern,O.Theory of Games and Economic Be⁃havior[M].Princeton:Princeton University Press,1944. [2][2]Owen,G.Game Theory[M].Academic Press,1982. [3][3]Tijs,S.Introduction to Game Theory[M].New Delhi:Hindustan Book Agency,2003. [4][4]Nash,J.F.Equilibrium Points in N-Person Games[C].Proceedings of the National Academy of Sciences of the United States of America,1950,36:48-49. [5][5]Nash,J.F.Non⁃cooperative Games[J].Annals of Mathematics,1951,54(2):286-295. [6][6]Nash,J.F.The Bargaining Problem[J].Econometrica,1950,18(2):155-162. [7][7]Nash,J.F.Two Person Cooperative Games[J].Econometrica,1953,21(7):128-140. [8][8]Tucker,A.W.A Two⁃Person Dilemma[R].California:Stanford Univer⁃sity,1950. [9][9]Selten,R.Re⁃examination of the Perfectness Concept for Equilibrium Points in Extensive Game[J].International Journal of Game Theory,1975,4:25-55. [10][10]Harsanyi,J.C.Games with Incomplete Information Played by Bayesian Players,Parts I,II and III[J].Management Science,1967-1968,14:159-182,320-334,486-502. [11][11]Shapley,L.S.A Value for N⁃person Games[M].In:Kuhn,H.W,Tuck⁃er,A.W.(eds.)Contributions to the Theory of Games,II(Annals of Mathematics Studies No.28).Princeton:Princeton University Press,1953:307-317. [12][12]Roth,A.E.(ed.).The Shapley Value:Essays in Honor of Lloyd S.Shap⁃ley[M].Cambridge:Cambridge University Press,1988. [13][13]Gillies,D.B.Some Theorems on N⁃person Games[D].Princeton:Prin⁃ceton University,1953. [14][14]Aumann,R.J.Acceptable Points in General Cooperative N⁃person Games[M].In:Contributions to the Theory of Games,Volume IV(Tuker,A.W.and Luce,R.D.eds.).Princeton:Princeton Uni⁃versity Press,1959:287-324. [15][15]Aumann,R.J.,Peleg,B.Von Neumann⁃Morgenstern Solutions to Coop⁃erative Games without Side Payments[J].Bulletin of American Mathe⁃matical Society,1960,66(3):173-179. [16][16]Aumann,R.J.Markets with a Continuum of Traders[J].Ecomometrica,1964,32(1-2):39-50. [17][17]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games,Part I:The Axiomatic Approach[R].Santa Monica:Rand Corp.,1968. [18][18]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games,Part II:The Random Order Approach[R].Santa Monica:Rand Corp.,1969. [19][19]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games,Part III:Values and Derivatives[R].Santa Monica:Rand Corp.,1970. [20][20]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games,Part IV:The Value and the Core[R].Santa Monica:Rand Corp.,1970. [21][21]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games,Part V:Monetary Economics[R]Santa Monica:Rand Corp.,1970. [22][22]Aumann,R.J.,Shapley,L.S.Values of Non⁃atomic Games[M].Princeton:Princeton University Press,1974. [23][23]Aumann,R.J.,Hart,S.Handbook of Game Theory with Economic Ap⁃plications[M].New York:Elsevier Science Publishers,1992,1994 and 2002. [24][24]Schelling,T.C.The Strategy of Conflict[M].MA,Cambridge:Har⁃vard University Press,1960. [25][25]Schelling,T.C.Arms and Influence[M].New Haven:Yale University Press,1966. [26][26]Schelling,T.C.Micromotives and Macrobehavior[M].MA,Cam⁃bridge:Harvard University Press,1978. [27][27]Isaacs,R.Differential Games[R].Santa Monica:Rand Corp.,1954. [28][28]Friedman,A.Different Games[M].Chichester:Wiley⁃Interscience,1972. [29][29]Smith,M.J.Game Theory and the Evolution of Fighting[M].Edinburgh:Edinburgh University Press,1972:8-28. [30][30]Owen,G.Multilinear Extensions of Games[J].Management Sciences,1972,18(5):64-79. [31][31]Aubin,J.P.Coeur et Valeur des Jeux Flous à Paiements Latéraux[C].Comptes Rendus Hebdomadaires des Séances de 1'Académie des Sci⁃ences,1974,(279-A):891-894. [32][32]Aubin,J.P.Cooperative Fuzzy Games[J].Mathematical Operation Re⁃search,1981,6(1):1-13. [33][33]Aubin,J.P.Mathematical Methods of Game and Economic Theory(re⁃vised edition)[M].Amsterdam:North⁃Holland,1982. [34][34]Aubin,J.P.Cooperative Fuzzy Games:The Static and Dynamic Points of View[J].Studies in Management Sciences,1984,20:407-428. [35][35]Butnariu,D.Fuzzy Games:A Description of the Concept[J].Fuzzy Sets and Systems,1978,1(3):181-192. [36][36]Butnariu,D.Solution Concepts for N⁃persons Fuzzy Games[M].In:Ad⁃vances in Fuzzy Set Theory and Applications.North⁃Holland,Amster⁃dam,1979:339-359. [37][37]Butnariu,D.Stability and Shapley Value for An N⁃person Fuzzy Games[J].Fuzzy Sets and Systems,1980,4(1):63-72. [38][38]Butnariu,D.,Kroupa,T.Shapley Mapping and the Cumulative Value for N⁃person Games with Fuzzy Coalition[J].European Journal of Operation⁃al Research,2008,186(1):288-299. [39][39]Butnariu,D.,Klement,E.P.Triangular Norm⁃based Measures and Games with Fuzzy Coalitions[M].Dordrecht:Kluwer Academic Publish⁃ers,1993. [40][40]Butnariu,D.,Klement,E.P.Core,Value and Equilibria for Market Games:On a Problem of Aumann and Shapley[J].International Jour⁃nal of Game Theory,1996:149-160. [41][41]Mertens,J.F.Values and Derivatives[J].Mathematics of Operations Research,1980,5(4):523-552. [42][42]Mertens,J.F.The Shapely Value in the Non⁃differentiable Case[J].Inter⁃national Journal of Game Theory,1988,17(1):1-65. [43][43]Sakawa,M.,Nishizaki,I.A Solution Concept Based on Fuzzy Decision in N⁃person Cooperative Game[C].Sin⁃gapore:World Scientific Pub⁃lishing,Cybernetics and Systems Research'92,1992:423-430. [44][44]Sakawa,M.,Nishizaki,I.A Lexicographical Concept in an N⁃person Coopera⁃tive Fuzzy Game[J].Fuzzy Sets and Systems,1994,61(3):265-275. [45][45]Nishizaki,I.,Sakawa,M.Fuzzy Cooperative Games Arising from Linear Production Programming Problem with Fuzzy Parameters[J].Fuzzy Sets and Systems,2000,114(1):11-21. [46][46]Nishizaki,I.,Sakawa,M.Fuzzy and Multiobjective Games for Conflict Resolution[M].Heidelberg:Physica⁃Verlag,2001. [47][47]Mareš,M.Coalition Forming Motivated by Vague Profits[C].Proceedings of the Transactions,Mathematical Methods in Economy,Ostrava,1995:114-119. [48][48]Mareš,M.Fuzzy Coalition Forming[C].Proceedings of 7th IFSA World Congress,Prague,1997,3:70-73. [49][49]Mareš,M.Fuzzy Shapley Value[C].Proceedings of Transactions of IP⁃MU 2000,Madrid,2000,3:1368-1372. [50][50]Mareš,M.Fuzzy Coalition Structures[J].Fuzzy Set and Systems,2000,114(1):23-33. [51][51]Mareš,M.Fuzzy Cooperative Games:Cooperation with Vague Expecta⁃tions[M].Physica⁃Verlag,New York,2001. [52][52]Molina,E.,Tejada,J.The Equalizer and Lexicographical Solutions for Cooperative Fuzzy Games:Characterization and Properties[J].Fuzzy Sets and Systems,2002,125(3):369-387. [53][53]Branzei,R.,Dimitrov,D.,Tijs,S.Convex Fuzzy Games and Participa⁃tion Monotonic Allocation Schemes[J].Fuzzy Set and Systems,2003,139(2):267-281. [54][54]Branzei,R.,Dimitrov,D.,Tijs,S.Hypercubes and Compromise Val⁃ues for Cooperative Fuzzy Games[J].European Journal of Operational Research,2004,155(3):733-740. [55][55]陈雯.基于模糊合作对策的动态联盟伙伴企业收益分配策略研究[D].北京:北京理工大学,2007. [56][56]Tsurumi,M.,Tanino,T.,Inuiguchi,M.A Shapley Function on a Class of Cooperative Fuzzy Games[J].European Journal of Operational Re⁃search,2001,129(3):596-618. [57][57]Li,S.,Zhang,Q.A Simplified Expression of the Shapley Function for Fuzzy Game[J].European Journal of Operational Research,2009,196(1):234-245. [58][58]Huang,Y.⁃A.,Liao,Y.⁃H.The Consistent Value of Fuzzy Games[J].Fuzzy Set and Systems,2009,160(5):644-656. [59][59]陈雯,张强.模糊合作对策的Shapley值[J].管理科学学报,2006,9(5):50-55. [60][60]黄礼健,吴祈宗,张强.具有模糊联盟值的n人合作博弈的模糊Shapley值[J].北京理工大学学报,2007,27(8):740-744. [61][61]黄礼健.具有模糊联盟值的合作博弈研究[D].北京:北京理工大学,2007. [62][62]Tijs,S.,Branzei,R.,Ishihara,S.,Muto,S.On Cores and Stable Sets for Fuzzy Games[J].Fuzzy Sets and Systems,2004,146(2):285-296. [63][63]Azrieli,Y.,Lehrer,E.On Some Families of Cooperative Fuzzy Games[J].International Journal of Game Theory,2007,36(1):1-15. [64][64]Hwang,Y.⁃A.Fuzzy Games:A Characterization of the Core[J].Fuzzy Sets and Systems,2007,158(22):2480-2493. [65][65]Hwang,Y.⁃A.,Liao,Y.⁃H.Max⁃consistency,Complement⁃consistency and the Core of Fuzzy Games[J].Fuzzy Sets and Systems,2008,159(2):152-163. [66][66]Butnariu,D.,Kroupa,T.Enlarged Cores and Bargaining Schemes in Games with Fuzzy Coalitions[J].Fuzzy Sets and Systems,2009,160(5):635-643. [67][67]高作峰,徐东方,鄂成国,等.重复模糊合作对策的核心和稳定集[J].运筹与管理,2006,15(4):68-72. [68][68]Borkotokey,S.Cooperative Games with Fuzzy Coalitions and Fuzzy Charac⁃teristic Functions[J].Fuzzy Sets and Systems,2008,159(2):138-151. [69][69]陈剑,冯蔚东.虚拟组织构建与管理[M].北京:清华大学出版社,2002. [70][70]Dubois,D.,Prade,H.Fuzzy Sets and Systems:Theory and Applications[M].New York:Academic Press,1980. [71][71]Dubois,D.,Prade,H.Ranking of Fuzzy Numbers in the Setting of Possi⁃bility Theory[J].Information Sciences,1983,30(3):183-224. [72][72]李荣钧.模糊多准则决策理论与应用[M].北京:科学出版社,2002. [73][73]Robinson,L.A Comment on Gerchak and Guptas“On Apportioning Costs to Customers in Centralized Continuous Review Systems”[J].Journal of Operations Management,1993,11:99-102. [74][74]Gerchak,Y.,Gupta,D.On Apportioning Costs to Customers in Central⁃ized Continuous Review Systems[J].Journal of Operations Management,1991,10(4):546-551. [75][75]Hartman,B.C.,Dror M.Cost Allocation in Continuous Review Inventory Models[J].Naval Research Logistics,1996,43(4):549-561. [76][76]Raghunathan,S.Impact of Demand Correlation in the Value of and Incen⁃tives for Information Sharing in a Supply Chain[J].European Journal of Operational Research,2003,146(3):634-649. [77][77]Grano,D.,Sošic',G.A Three Stage Model for a Decentralized Distribution System ofRetailers[J].OperationsResearch,2003,51(5):771-784. [78][78]Reinhardt,G.,Dada,M.Allocating the Gains from Resource Pooling with the Shapley Value[J].Journal of the Operational Research Society,2005,56(8):997-1000. [79][79]Kemahhoğlu Ziya,E.Formal Methods of Value Sharing in Supply Chains[D].Atlanta:School of Industries and Systems Engineering,Georgia In⁃stitute of Technology,2004. [80][80]Leng,M.,Parlar,M.Allocation of Cost Savings in a Three Level Supply Chain with Demand Information Sharing:A Cooperative⁃game Approach[R].Working Paper,McMaster University,Hamilton,2009. [81][81]叶飞,郭东风,孙东川.虚拟企业成员之间利益分配方法研究[J].统计与决策,2000,(7):11-12. [82][82]戴建华,薛恒新.基于Shapley值法的动态联盟伙伴企业利益分配策略[J].中国管理科学,2004,12(4):33-36. [83][83]叶飞.基于合作对策的供应链协作利益分配方法研究[J].计算机集成制造系统,2004,10(12):4250-4257. [84][84]马士华,王鹏.基于Shapley值法的供应链伙伴间收益分配机制[J].工业工程管理,2006,(4):34-36,49. [85][85]刘浪,唐海军,陈仲君.Shapley值在动态联盟利益分配博弈分析中的应用[J].工业工程,2006,9(6):118-121. [86][86]吴辉球.企业动态联盟利润分配模型及其应用[J].长春工业大学学报(自然科学版),2006,27(1):78-81. [87][87]林琳.基于企业动态联盟的窜货模型及利益分配问题研究[D].沈阳:东北大学,2006. [88][88]刘卫华,赵潘.基于Shapley值法的供应链联盟企业利益分配问题研究[J].安徽农业科学,2007,35(26):8361-8362. [89][89]沙亚军.供应链上合作博弈解研究[D].济南:山东大学,2007. [90][90]张润红,罗荣桂.基于Shapley值法的共同配送利益分配研究[J].武汉理工大学学报,2008,30(1):150-153. [91][91]孙世民,张吉国,王继永.基于Shapley值法和理想点原理的优质猪肉供应链合作伙伴利益分配研究[J].运筹与管理,2008,17(6):87-91. [92][92]李震,邓培林,王宇奇,等.基于Shapley值法模型的供应链联盟企业利益分配修正算法[J].安徽农业科学,2008,36(29):12907-12909. [93][93]Chen Wen,Zhang Qiang,Wang Mingzhe.Profit Allocation Scheme a⁃mong Partners in Virtual Enterprises Based on Shapley Values with Fuzzy Payoffs[J].International Journal of Logistics Economics and Globaliza⁃tion,2007,1(1):49-62. [94][94]杜河建.动态联盟收益分配合作博弈分析[D].长沙:国防科学技术大学,2006. [95][95]Hartman,B.C.,Dror,M,Shaked,M.Cores of Inventory Centralization Games[J].Games and Economic Behavior,2000,31(1):26-49. [96][96]Hartman,B.C.,Dror,M.Optimizing Centralized Inventory Operations in a Cooperative Game Theory Setting[J].IIE Transactions,2003,35(3):243-257. [97][97]Müller,A.,Scarsini,M.,Shaked,M.The Newsvendor Game has a Nonempty Core[J].Games and Economic Behavior,2002,38(1):118-126. [98][98]Slikker,M.,Fransoo,J.,Wouters,M.Cooperation between Multiple News⁃vendors with Transshipments[J].European Journal of Operational Research,2005,167(2):370-380. [99][99]Chen,X.,Zhang,J.A Stochastic Programming Duality Approach to In⁃ventory Centralization Games[R].Working Paper,University of Illi⁃nois,Urbana⁃Champaign,IL,2006. [100][100]Hartman,B.C.,Dror,M.Allocation of Gains from Inventory Centrali⁃zation in Newsvendor Environments[J].IIE Transactions,2005,37(2):93-107. [101][101]Hartman,B.C.,Dror,M.Shipment Consolidation:Who Pays for it and How Much[R].WorkingPaper,TheUniversityofArizona,AZ,2004. [102][102]Klijn,F.,Slikker,M.Distribution Center Consolidation Games[J].Opera⁃tions Research Letters,2005,33(3):285-288. [103][103]Özen,U.,Fransoo,J,Norde,H,Slikker,M.Cooperation between Multiple Newsvendors with Warehouses[R].Working Paper,TUE,Eindhoven,The Netherlands,2004. [104][104]Özen,U.,Sošic',G.A Multi⁃retailer Decentralized Distribution System with Updated Demand Information[R].Working Paper,TUE,Eind⁃hoven,The Netherlands,2006. [105][105]Ben⁃Zvi,N.Inventory Centralization When Shortage Costs Differ:Priori⁃ties and Cost Allocations[D].M.Sc.thesis,Tel⁃Aviv University,Tel⁃Aviv,Israel,2004. [106][106]Ben⁃Zv,N.,Gerchak,Y.Inventory Centralization When Shortage Costs Differ:Priorities and Cost Allocations[R].Working Paper,Tel⁃Aviv University,Tel⁃Aviv,Israel,2006. [107][107]Özen,U.,Norde,H.,Slikker,M.On the Convexity of Newsvendor Games[R].Working Paper,TUE,Eindhoven,The Netherlands,2005. [108][108]Guardiola,Luis A.Meca,A.,Timmer,J.Cooperation and Profit Allo⁃cation in Distribution Chains[J].Decision Support Systems,2007,44(1):17-27. [109][109]尹钢,邓飞其,李兴厚.基于合作对策的供应链利益分配模型[J].武汉科技大学学报(自然科学版),2003,26(4):430-432. [110][110]王春琦,雷勋平.供应链环境下联盟企业间的利益分配[J].安徽工业大学学报,2005,22(3):301-303,307. [111][111]杨金钢.基于博弈的供应链订货定价策略及分配机制方法研究[D].天津:天津大学,2005. [112][112]Kohli,R.,Park,H.A Cooperative Game Theory Model of Quantity Dis⁃counts[J].Management Science,1989,35(6):693-707. [113][113]Reyniers,D.J.,Tapiero,C.S.The Delivery and Control of Quality in Supplier⁃Producer Contracts[J].Management Science,1995,41(10):1581-1589. [114][114]Van Mieghem,J.Coordinating Investment,Production and Subcontrac⁃ting[J].Management Science,1999,45(7):954-971. [115][115]Chod,J,Rudi,N.Strategic Investments,Trading and Pricing under Forecast Updating[R].Working Paper,University of Rochester,Ro⁃chester,NY,2003. [116][116]Bernstein,F.,Marx,L.Reservation Profit Levels and the Division of Supply Chain Profit[R].Working Paper,Duke University,Durham,NC,2005. [117][117]孙东川,叶飞.动态联盟利益分配的谈判模型研究[J].科研管理,2001,22(2):91-95. [118][118]卢少华,陶志祥.动态联盟企业的利益分配博弈[J].管理工程学报,2004,18(3):56-60. [119][119]陈伟.虚拟生产收益分配问题的分析[D].西安:西安交通大学,2003. [120][120]牛娇红.虚拟企业合作伙伴及收益分配的研究[D].西安:西安电子科技大学,2005. [121][121]刘兴旺.基于博弈论的供应链企业收益分配问题研究[D].长沙:长沙理工大学,2007. [122][122]Cachon,G.,Lariviere,M.A.Supply Chain Coordination with Revenue Sha⁃ring Contracts:Strengths and Limitations[R].Working Paper,the Whar⁃ton School of Business,University of Pennsylvania,Philadelphia,2000. [123][123]Giannoccaro,I.Pontrandolfo,P.Supply Chain Coordination by Revenue Sharing Contracts[J].International Journal of Production Economics,2004,89(2):131-139. [124][124]吴宪华.动态联盟的分配格局研究[J].系统工程,2001,19(3):34-38. [125][125]岳超源.决策理论与方法[M].北京:科学出版社,2003. [126][126]刘松.基于可拓理论的虚拟企业供应链分配方法研究[D].哈尔滨:哈尔滨理工大学,2005. [127][127]刘松,宋加升,高长元.基于虚拟供应链的可拓利益分配方法研究[J].管理科学,2005,18(2):14-19. [128][128]吴育华,赵强,王初.基于多人合作理论的供应链库存利益分配机制研究[J].中国管理科学,2002,10(6):53-56. [129][129]陈菊红,汪应洛,孙林岩.虚拟企业收益分配问题博弈研究[J].运筹与管理,2002,11(1):11-16. [130][130]叶春,谢科范,王先甲.面向供应链的虚拟企业利润分配机制研究[J].武汉理工大学学报(信息与管理工程版),2008,30(1):118-120,131. [131][131]李晔.旅游企业动态联盟收益分配研究[D].南昌:江西财经大学,2005. [132][132]兰天,徐剑.企业动态联盟利益分配的机制与方法[J].东北大学学报(自然科学版),2008,29(2):301-304. [133][133]闫威,陈林波.累积创新中动态联盟的利益分配[J].科技进步与对策,2008,25(1):114-116. [134][134]韩建军,郭耀煌.基于事前协商的动态联盟利润分配机制[J].西南交通大学学报,2003,38(6):785-788. [135][135]张向阳,杨敏才,刘华明,等.供应链管理中风险分担与利益分配机制研究[J].华中科技大学学报(社会科学版),2004,(5):49-52. [136][136]姜大鹏,和炳全.企业动态联盟利润分配模型构建[J].昆明理工大学学报(理工版),2005,30(1):94-96. [137][137]王晓萍,赵晓军.基于博弈论的逆向供应链合作利润分配研究[J].工业技术经济,2007,26(11):521-523. [138][138]Sakawa,M.,Nishizaki,I.,Uemura,Y.Fuzzy Programming and Profit and Cost Allocation for a Production and Transportation Problem[J].European Journal of Operation Research,2001,131(1):1-15. [139][139]杨晶,江可申,邸强.基于TOPSIS的动态联盟利益分配方法[J].系统工程,2008,26(10):22-25. [140][140]张捍东,严钟,王健.对企业动态联盟利益分配问题的思考[C].北京:第八届中国管理科学学术年会.中国管理科学专辑,2006:665-668 [141][141]Zadeh,L.A.Fuzzy Sets[J].Information and Control,1965,8(3):338-353. [142][142]罗承忠.模糊集引论[M].北京:北京师范大学出版社,1989. [143][143]张文修,王国俊,刘旺金,等.模糊数学引论[M].西安:西安交通大学出版社,1991. [144][144]韩立岩,汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1998. [145][145]彭祖赠,孙辒玉.模糊数学及其应用[M].武汉:武汉大学出版社,2002. [146][146]朱剑英.智能系统非经典数学方法[M].武汉:华中科技大学出版社,2001. [147][147]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2004. [148][148]郭嗣琮.基于结构元理论的模糊数学分析原理[M].沈阳:东北大学出版社,2004. [149][149]陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2005. [150][150]Zadeh,L.A.The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[M].American Elsevier Publishing Company,1973. [151][151]Puri,M.L.,Ralescu,D.A.Fuzzy Random Variables[J].Journal of Mathematical Analysis and Applications,1986,114(2):409-422. [152][152]Banks,H.T.,Jacobs,M.Q.A Differential Calculus for Multifunctions[J].Journal of Mathematical Analysis and Applications,1970,29(2):246-272. [153][153]Dubois,D.,Prade,H.Fuzzy Set⁃theoretic Differences and Inclusions and Their Use in the Analysis of Fuzzy Equations[J].Control and Cy⁃bernetics,1984,13(3):129-146. [154][154]Zhao,R.,Govind,R.Solution of Algebraic Equations Involving General⁃ized Fuzzy Numbers[J].Information Sciences,1991,56(1-3):199-243. [155][155]Dubois,D.,Kerre,E.,Mesiar,R.,Prade,H.Fuzzy Interval Analy⁃sis[M].In:Dubois D.,Prade H.(eds.),The Handbook of Fuzzy Sets:Volume I Fundamentals of Fuzzy Sets.Dordrecht:Kluwer Aca⁃demic Publishers,2000:483-581. [156][156]Sanchez,E.Solution of Fuzzy Equations with Extended Operations[J].Fuzzy Sets and Systems,1984,12(3):237-248. [157][157]Biacino,L.,Lettieri,A.Equations with Fuzzy Numbers[J].Information Sciences,1989,47:63-76. [158][158]Boukezzoula,R,Galichet,S,Foulloy,L.Inverse Arithmetic Operators for Fuzzy Intervals[C].EUSFLAT Conf.2,2007:279-286. [159][159]Puri,M.L.,Ralescu,D.A.Differentials of Fuzzy Functions[J].Journal of Mathematical Analysis and Applications,1983,91(2):552-558. [160][160]Wu,H.C.The Karush⁃Kuhn⁃Tucker Optimality Conditions in an Optimi⁃zation Problem with Interval⁃valued Objective Function[J].European Journal of Operational,2009,196(1):49-60. [161][161]吴丛炘,马明,方锦暄.模糊分析学的结构理论[M].贵阳:贵州科技出版社,1994. [162][162]吴丛炘,马明.模糊分析学基础[M].北京:国防工业出版社,1991. [163][163]郭嗣琮,刘海涛.模糊数的相等、同一与等式限定运算[J].模糊系统与数学,2008,22(6):76-82. [164][164]Wang,X.Z.,Kerre,E.Reasonable Properties for the Ordering of Fuzz⁃y Quantities(I),(II)[J].Fuzzy Sets and Systems,2001,118(3):375-405. [165][165]Dubois,D,Prade,H.System of Linear Fuzzy Constraints[J].Fuzzy Sets and Systems,1980,3(1):37-48. [166][166]张广全.模糊集测度论[M].北京:清华大学出版社,1998. [167][167]Gong,Z.,Wu,C.X.Bounded Variation,Absolute Continuity and Ab⁃solute Integrability for Fuzzy⁃number⁃valued Functions[J].Fuzzy Sets and Systems,2002,129(1):83-94. [168][168]Wu,C.X.,Wu,C.The Supremum and Infimum of the Set of Fuzzy Numbers and Its Application[J].Journal of Mathematical Analysis and Applications,1997,210(2):499-511. [169][169]Ramík,J,Rˇímánek,J.Inequality Relation between Fuzzy Numbers and Its Use in Fuzzy Optimization[J].Fuzzy Sets and Systems,1985,16(2):123-138. [170][170]Furukara,N.A Parametric Total Order on Fuzzy Numbers and a Fuzzy Shortest Route Problem[J].Optimization,1994,30(4):367-377. [171][171]王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社,2008. [172][172]Grabisch,M.,Murofushi,T.,Sugeno,M.Fuzzy Measures and Inte⁃grals Theory and Applications[M].New York:Physica⁃Verlag,2000. [173][173]Wang,Z.,Xu,K.,Heng,P.A.,et al.Indeterminate Integral with Respect to Nonadditive Measures[J].Fuzzy Sets and Systems,2003,138(3):485-495. [174][174]Yang,R.,Wang,Z.Y.,Heng,P.A.,et al.Fuzzy Numbers and Fuzzification of the Choquet Integral[J].Fuzzy Sets and Systems,2005,153(1):95-113. [175][175]张德利,郭彩梅.模糊积分论[M].长春:东北师范大学出版社,2004. [176][176]Peleg,B.,Sudhölter,P.Introduction to The Theory of Cooperative Games[M].Boston:Kluwer Academic publishers,2003. [177][177]侯定丕.博弈论导论[M].合肥:中国科学技术大学出版社,2004. [178][178]谢政.对策论[M].湖南长沙:国防科技大学出版社,2004. [179][179]张盛开,张亚东.现代对策论与工程决策方法[M].大连:东北财经大学出版社,2005. [180][180]施锡铨.博弈论[M].上海:上海财经大学出版社,2000. [181][181]王建华.对策论[M].北京:清华大学出版社,1986. [182][182]刘德铭,黄振高.对策论及其应用[M].长沙:国防科技大学出版社,1995. [183][183]Grabisch,M.,Roubens,M.An Axiomatic Approach to the Concept of Interaction Among Players in Cooperative Games[J].International Jour⁃nal of Game Theory,1999,28(4):547-565. [184][184]Sprumont,Y.Population Monotonic Allocation Schemes for Cooperative Games with Transferable Utility[J].Games and Economic Behavior,1990,2(4):378-394. [185][185]Preiss,K.Goldman,S.L.Nagel,R.N.21st Century Manufacturing Enterprises Strategy:An Industry⁃Led View[R].Lacocca Institute,Lehigh University,1991. [186][186]李瑜玲.动态联盟若干问题的研究[J].商业研究,2003,24:71-74. [187][187]王硕.虚拟企业理论与实务[M].合肥工业大学出版社,2005. [188][188]叶飞,孙东川.面向全生命周期的虚拟企业组建与运作[M].机械工业出版社,2005. [189][189]叶丹,战德臣,徐晓飞,等.敏捷虚拟企业组织形态及描述方法[J].高技术通讯,1997,(7):26-30. [190][190]王成恩,尹朝万,罗焕佐,等.可重构制造系统[M].沈阳:东北大学出版社,2000. [191][191]罗利,鲁若愚.产学研合作对策模型研究[J].管理工程学报,2000,14(2):1-5. [192][192]李登峰.模糊多目标多人决策与对策[M].北京:国防工业出版社,2003. [193][193]Yu,Xiao⁃Hui,Zhang,Qiang.An Extension of Cooperative Fuzzy Games[J].Fuzzy Sets and Systems,2010,161(11):1614-1634. [194][194]Yu,Xiao⁃Hui,Zhang,Qiang.A Study on Nash Equilibrium of Fuzzy Noncooperative Games[J].Journal of Systems Engineering and Elec⁃tronics,2010.21(1):47-56. [195][195]Yu,Xiao⁃Hui,Zhang,Qiang.The Fuzzy Core in Games with Fuzzy Coa⁃litions[J].Journal of Computational and Applied Mathematics,2009,230(1):173-186. [196][196]Yu,Xiao⁃Hui,Zhang,Qiang.The Shapley Value for Fuzzy Bi⁃coopera⁃tive Games[J].International Journal of Computational Intelligence Sys⁃tems,2007,57(1):81-95. [197][197]Yu,Xiao⁃Hui,Zhang,Qiang.Profit Allocation Scheme Among Players in Supply⁃Chain Based on Shapley Values of Fuzzy Bi⁃cooperative Games[J].Journal of Beijing Institute of Technology,2009,18(1):106-111. [198][198]于晓辉,张强.多目标线性生产规划的模糊联盟对策[J].运筹与管理,2009,18(2):66-73. [199][199]于晓辉,张强.基于区间Shapley值的生产合作利益分配研究[J].北京理工大学学报(自然科学版),2008,28(7):655-658. [200][200]Yu,Xiao⁃Hui,Zhang,Qiang.Shapley Value for Cooperative Games with Fuzzy Coalition[J].Journal of Beijing Institute of Technology,2008,17(2):249-252. [201][201]于晓辉,张强.具有区间支付的合作对策的区间Shapley值[J].模糊系统与数学,2008,22(5):151-156. [202][202]于晓辉,张强.模糊支付合作对策的核心及其在收益分配问题中的应用[J].模糊系统与数学,2010.6:65-75. [203][203]Bergstresser,K.,Yu,P.L.Domination Structure and Multicriteria Problems in n⁃person Games[J].Theory and Decision,1977,8:5-48. [204][204]Hwang,C.L.,Lin,M.J.Group Decision Making under Multiple Cri⁃teria:Methods and Applications Lecture Notes in Economics and Mathe⁃matical Systems[M].Berlin:Springer⁃Verlag,1987. [205][205]Tanino,T.,Muranaka,Y.,Tanaka,M.On Multiple Criteria Character⁃istic Mapping Games[C].Proceedings of MCDM'92,Taipei,1992:63-72. [206][206]Lind,M.Cooperative Game Theory and Multiple Criteria Decision Mak⁃ing[D].University of Aarhus,1996. [207][207]Jornsten,K.,Lind,M.,Tind,J.Stable Payment Schemes of TU⁃games with Multiple Criteria[J].Optimization,1997,40:57-78. [208][208]Sakawa,M.,Nishizaki,I.Fuzzy and Multiobjective Games for Conflict Resolution[M].New York:Physica⁃Verlag,2001.
[展开]

相关推荐

发表评论

同步转发到先晓茶馆

发表评论

手机可扫码阅读