章节

基于特征工程的电池健康状态评价

摘要

随着新能源汽车的快速普及,电池系统的性能和使用寿命更加受到社会的关注。针对电池老化状态快速精确估计及长时间尺度剩余寿命预测的难题,本文开展了基于特征工程的电池系统健康诊断研究。总结并分类介绍了现有数据驱动方法的关键健康特征提取方法,分析了各种特征与电池容量的相关性,并提出基于过滤与封装法融合的特征子集筛选方法,提高了特征子集的有效性和容量估计的准确性,同时有效降低了特征维度从而降低计算复杂度。针对宏观车载使用条件,提出基于电池包特征带和局部充电工况特征提取的剩余里程预测方法,实现车载条件下的剩余里程准确预测。针对不同电化学体系的电池和不同使用条件特别是动态使用工况,提出基于局部放电工况的通用健康特征提取方法,在不同条件下实现了高精的健康预测,并分析了不同机器学习算法的健康诊断效果。

作者

车云弘 ,重庆大学,主要研究方向为锂离子电池建模、状态估计和寿命预测。
邓忠伟 ,博士,重庆大学,弘深青年教师,主要从事锂离子电池数据驱动和机理建模等方面研究。
李阳 ,重庆大学,主要研究基于大数据的电动汽车电池组健康诊断。
胡晓松 ,博士,重庆大学教授,主要研究锂离子动力电池/超级电容系统管理、机电复合动力总成优化设计与控制等。

参考文献 查看全部 ↓
  • [1]《中共中央关于制定国民经济和社会发展第十四个五年规划和二○三五年远景目标的建议》,2020年10月29日。
  • [2]中华人民共和国公安部交通管理局:《2020年全国新注册登记机动车3328万辆 新能源汽车达492万辆》,2021年1月。
  • [3]《三项电动汽车强制性国家标准正式发布》,工业和信息化部网站,2020年5月14日。
  • [4]戴海峰、张艳伟、魏学哲等:《锂离子电池剩余寿命预测研究》,《电源技术》2019年第2期,第2029~2035页。
  • [5]林娅:《基于数据驱动的锂电池剩余使用寿命预测方法研究》,南京航空航天大学硕士学位论文,2018。
  • [6]庞景月、马云彤、刘大同等:《锂离子电池剩余寿命间接预测方法》,《中国科技论文》2014年第1期,第28~36页。
  • [7]王明:《风储联合应用中储能的需求评估方法研究》,湖南大学硕士学位论文,2015。
  • [8]ARMAROLI N,BALZANI V. Towards an electricity-powered world[J]. Energy & Environmental Science,2011,4(9):3193-3222.
  • [9]WOOD E,ALEXANDER M,BRADLEY T H. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles[J]. Journal of Power Sources,2011,196(11):5147-5154.
  • [10]HU X,XU L,LIN X,et al. Battery Lifetime Prognostics[J]. Joule,2020,
  • [11]NG S S Y,XING Y,TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy,2014,118(114-123).
  • [12]HU X,LI S E,JIA Z,et al. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles[J]. Energy,2014,64(953-960).
  • [13]ZHOU Y,HUANG M,CHEN Y,et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources,2016,321(1-10).
  • [14]HU X,JIANG J,CAO D,et al. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling[J]. IEEE Transactions on Industrial Electronics,2015,63(2645-2656).
  • [15]CHEN Y,BAO J,XIANG Z,et al. Predictability analysis of lithium-ion battery remaining useful life with multiscale entropy;proceedings of the 2013 International Conference on Computational and Information Sciences,F,2013[C]. IEEE.
  • [16]FENG F,HU X,HU L,et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews,2019,112(102-113).
  • [17]LU L,HAN X,LI J,et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226(272-288).
  • [18]LIU J,CHEN Z. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Health Indicator and Gaussian Process Regression Model[J]. IEEE Access,2019,7(39474-39484).
  • [19]LIU D,SONG Y,LI L,et al. On-line life cycle health assessment for lithium-ion battery in electric vehicles[J]. Journal of Cleaner Production,2018,199(1050-1065).
  • [20]YANG D,ZHANG X,PAN R,et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources,2018,384(387-395).
  • [21]HU C,JAIN G,ZHANG P,et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery[J]. Applied Energy,2014,129(49-55).
  • [22]DATONG L,JIANBAO Z,HAITAO L,et al. A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation Modeling and Prognostics[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015,45(6):915-28.
  • [23]RAZAVI-FAR R,FARAJZADEH-ZANJANI M,CHAKRABARTI S,et al. Data-driven prognostic techniques for estimation of the remaining useful life of Lithium-ion batteries[J]. IEEE International Conference on Prognostics and Health Management (ICPHM),2016,
  • [24]SEVERSON K A,ATTIA P M,JIN N,et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy,2019,4(5):383-91.
  • [25]ZHAO Q,QIN X,ZHAO H,et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability,2018,85(99-108).
  • [26]ZHOU D,XUE L,SONG Y,et al. On-Line Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Optimized Gray Model GM(1,1)[J]. Batteries,2017,3(4).
  • [27]DENG Y,YING H,E J,et al. Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries[J]. Energy,2019,176(91-102).
  • [28]REN L,ZHAO L,HONG S,et al. Remaining Useful Life Prediction for Lithium-Ion Battery:A Deep Learning Approach[J]. IEEE Access,2018,6(50587-50598).
  • [29]TAGADE P,HARIHARAN K S,RAMACHANDRAN S,et al. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis[J]. Journal of Power Sources,2020,445.
  • [30]ZHANG Y,GUO B. Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine[J]. Energies,2015,8(11):12439-12457.
  • [31]LI J,LYU C,WANG L,et al. Remaining capacity estimation of Li-ion batteries based on temperature sample entropy and particle filter[J]. Journal of Power Sources,2014,268(895-903).
  • [32]GUO P,CHENG Z,YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources,2019,412(442-450).
  • [33]RICHARDSON R R,OSBORNE M A,HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources,2017,357(209-219).
  • [34]LI Y,LIU K,FOLEY A M,et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable and Sustainable Energy Reviews,2019,113.
  • [35]XIONG R,LI L,TIAN J. Towards a smarter battery management system:A critical review on battery state of health monitoring methods[J]. Journal of Power Sources,2018,405(18-29).
  • [36]DUBARRY M,LIAW B Y,CHEN M-S,et al. Identifying battery aging mechanisms in large format Li ion cells[J]. Journal of Power Sources,2011,196(7):3420-3425.
  • [37]WENG C,CUI Y,SUN J,et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources,2013,235(36-44).
  • [38]ANSEAN D,GARCIA V M,GONZALEZ M,et al. Lithium-Ion Battery Degradation Indicators Via Incremental Capacity Analysis[J]. IEEE Transactions on Industry Applications,2019,55(3):2992-3002.
  • [39]LI X,WANG Z,ZHANG L,et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources,2019,410-411(106-114).
  • [40]WANG Z,MA J,ZHANG L. State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression[J]. IEEE Access,2017,5(21286-21295).
  • [41]WENG C,SUN J,PENG H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources,2014,258(228-237).
  • [42]LI Y,ABDEL-MONEM M,GOPALAKRISHNAN R,et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources,2018,373(40-53).
  • [43]DUBARRY M,TRUCHOT C,LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources,2012,219(204-216).
  • [44]TANG X,ZOU C,YAO K,et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources,2018,396(453-458).
  • [45]FENG X,LI J,OUYANG M,et al. Using probability density function to evaluate the state of health of lithium-ion batteries[J]. Journal of Power Sources,2013,232(209-218).
  • [46]KATO H,KOBAYASHI Y,MIYASHIRO H. Differential voltage curve analysis of a lithium-ion battery during discharge[J]. Journal of Power Sources,2018,398(49-54).
  • [47]GAO Y,JIANG J,ZHANG C,et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of Power Sources,2018,400(641-651).
  • [48]LI X,SHU X,SHEN J,et al. An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles[J]. Energies,2017,10(5).
  • [49]BERECIBAR M,GARMENDIA M,GANDIAGA I,et al. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy,2016,103(784-796).
  • [50]MERLA Y,WU B,YUFIT V,et al. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources,2016,307(308-319).
  • [51]SHIBAGAKI T,MERLA Y,OFFER G J. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry[J]. Journal of Power Sources,2018,374(188-195).
  • [52]WIDODO A,SHIM M-C,CAESARENDRA W,et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications,2011,38(9):11763-11769.
  • [53]HU X,JIANG J,CAO D,et al. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling[J]. IEEE Transactions on Industrial Electronics,2015,63(2645-2656).
  • [54]PAN H,Lü Z,WANG H,et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy,2018,160(466-477).
  • [55]SAHA B,GOEBEL K,POLL S,et al. Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(2):291-296.
  • [56]WANG Z,ZENG S,GUO J,et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy,2019,167(661-669).
  • [57]KHALEGHI S,FIROUZ Y,VAN MIERLO J,et al. Developing a real-time data-driven battery health diagnosis method,using time and frequency domain condition indicators[J]. Applied Energy,2019,255.
  • [58]BARAI A,TANGIRALA R,UDDIN K,et al. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells[J]. Journal of Energy Storage,2017,13(211-219).
  • [59]SOMMER L W,RAGHAVAN A,KIESEL P,et al. Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors[J]. Journal of The Electrochemical Society,2015,162(14):A2664-A2669.
  • [60]BENIWAL S,ARORA J. Classification and feature selection techniques in data mining[J]. International Journal of Engineering Research & Technology,2012,1(6):1-6.
  • [61]TANG J,ALELYANI S,LIU H. Feature Selection for Classification:A Review[J]. Data classification:Algorithms and applications,2014,37(37-64).
  • [62]SAEYS Y,INZA I,LARRANAGA P. A review of feature selection techniques in bioinformatics[J]. Bioinformatics,2007,23(19):2507-2517.
  • [63]KOHAVI R,JOHN G H. Wrappers for feature subset selection[J]. Artif Intell,1997,97(1-2):273-324.
  • [64]LI X,WANG Z,YAN J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regressio[J]. Journal of Power Sources,2019,421(56-67).
  • [65]ZHU Z X,ONG Y S,DASH M. Wrapper-filter feature selection algorithm using a memetic framework[J]. Ieee T Syst Man Cy B,2007,37(1):70-76.
  • [66]HSU H H,HSIEH C W,LU M D. Hybrid feature selection by combining filters and wrappers[J]. Expert Systems with Applications,2011,38(7):8144-8150.
  • [67]CRONE S F,KOURENTZES N. Feature selection for time series prediction-A combined filter and wrapper approach for neural networks[J]. Neurocomputing,2010,73(10-12):1923-1936.
  • [68]Y. LI M A-M,R. GOPALAKRISHNAN,M. BERECIBAR,E. NANINI-MAURY,N. OMAR,P. VAN DEN BOSSCHE,J. VAN MIERLO. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources,2018,373(40-53).
  • [69]JIANG Y,JIANG J,ZHANG C,et al. Recognition of battery aging variations for LiFePO4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches[J]. Journal of Power Sources,2017,360(180-188).
  • [70]WENG C,SUN J,PENG H. An Open-Circuit-Voltage Model of Lithium-Ion Batteries for Effective Incremental Capacity Analysis[M]. Dynamic Systems and Control Conference. 2013.
  • [71]HAN X,OUYANG M,LU L,et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:Aging mechanism identification[J]. J Power Sources,2014,251(38-54).
  • [72]WANG L,PAN C,LIU L,et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Appl Energy,2016,168(465-472).
  • [73]SEVERSON K A,ATTIA P M,JIN N,et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat Energy,2019,4(5):383-391.
  • [74]ATTIA P M,GROVER A,JIN N,et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature,2020,578(7795):397-402.

基于特征工程的电池健康状态评价

可试读20%内容 PDF阅读 阅读器阅览

试读已结束,剩余80%未读

¥29.14 查看全文 >

VIP免费

章节目录

  • 一 引言
  • 二 基于特征融合筛选的电池健康状态估计
    1. (一)健康因子提取方法综述
      1. 1.基于外部测量数据的特征提取
      2. 2.基于计算数据的特征提取
    2. (二)特征选择方法
      1. 1.基于过滤的特征选择方法
      2. 2.基于封装法的特征选择方法
      3. 3.基于融合方法的特征选择方法
    3. (三)电池健康状态估计精度验证
    4. (四)小结
  • 三 基于电池包特征带的剩余里程研究
    1. (一)数据源介绍
    2. (二)特征带提取
      1. 1.IC特征的初步提取
      2. 2.IC特征的筛选
      3. 3.IC特征带
    3. (三)等效循环次数
    4. (四)其他基于局部充电过程的特征提取
    5. (五)基于车载数据的预测验证
    6. (六)小结
  • 四 基于通用特征提取的电池健康状态估计
    1. (一)基于局部放电过程的通用健康因子提取
    2. (二)动态工况下的提取方法
    3. (三)SOH估计验证
    4. (四)小结
  • 五 总结与展望

章节图片/图表

查看更多>>>